

CAIRN ERECTED TO THE MEMORY OF THE LATE LIEUTENANT H. G. BETL R. E.
ON THE SPOT WHERF HE DIED, LITP GAZ, TAGHDUMBASH PAMIR LRECTED MY THF INDO-RUSHIAN TRUANOULATIUN DETACHMENT

RECORDS

OF THE

SURVEY OF INDIA

Volume V
REPORTS OF THE SURVEY PARTIES

FOR
1912=13

PREPARED UNDER THE DIRECTION OF
Colonel Sir S. G. BURRARD, K.C.S.I., R.E., F.R.S.
Surveyor General of India

CAICDTTA

CONTENTS.

PART I.-TOPOGRAPHICAL SURVEY.

REPORTS FROM THE NORTHERN CIRCLE.

REPORTS FROM THE NORTHERN CIRCLE.							Page
No. 1. Party	1
No. 2 Pabty	2
No. 3 Party	4
No. 1 Patty	\ldots	\ldots	0
No. 90 Pabty	...	\ldots	7
The Rivbiain	M ${ }^{\text {bra }}$	\bigcirc

REPORTS FROM THE BOUTHERN CIRCLE.

No. 6 Pabty	13
No. 6 Pabti"	...	14
No. 7 Pabty"	\cdots	\cdots	...	15
No. 8 Pabty	17

reports from the eastern circle.

Nu. ${ }^{\text {a Pabty }}$	-	20
No. 10 Palty	22
No. 11 Party	24
No. 12 Pauty-	20

TABLE I-OUTTURNS OF DRTAIL SURVEY 29
TABLE II.-DETAILS OF TRIANGULATION AND TRAVERSING ... 30
TABLE III.-COST-RATES OF SURVEY 31

PART II.-GEODETIC AND SCIENTIFIC OPERATIONS.

No. 18 Party-astronomical Latitudes	-	...	-	32
No. 14 Partr-PENDULUM operations	...	\cdots	\cdots	32
No. 15 Pabty-TRIANGUIAATION	-	. 0	-.	48
No. 16 Pasty-TIDAL OPERATIONS	\cdots	...	\ldots	60
No. 17 Party-Levelling (with appended meport on ter Nepal boundo				
Abt drimmitation)	...	-	\ldots	67
No. 18 Party-Magnetic survey	-	...	\ldots	98
COMPUTING AND TECHNICAL OFFICES	147
NOTE IN REPLY TO Mr. HAYDEN'S PAPER ON THE RELATIONSHIP				
$\begin{array}{ccccccc}\text { OF THE HIMALLAYS } \\ \text { INDIAN PENINSULA } & \text { THE } & \text { INDO-GANGETIC } & \text { PLAIN } \\ \text { IN }\end{array}$				

ILLUSTRATIONS.

```
CajRN ERECTED TO THE MEMORY OF THE LatE LIEOTENANT H.g.
    BELL, f.b., ON THE SPOT WHERE HE DIED, LUP GAZ, TAGHDUM-
    BASH PAMIR ... ... ... ... ... ... Frontispicce.
MEmORIAL TABLET TO THREE MEMBERS OF THE TRIANGULATION
    PABTY WHO LOST THEIR LIVES IN THE FIELD ... ... ... Facing page 43
ROUGH DIAGRAM OF TRAVERSE ... ... ... ... ... 
TRIANGULATION MAST FOR USE IN WOODED COUNTRY ... ... 147
```

MAPS.
(At end of Volume).
1 Index to modern surveys, northern circle.

| 2. | $"$ | $"$ | SOUTHERN " |
| :--- | :--- | :--- | :--- | :--- | :--- |
| y. " | $"$ | $"$ | EASTERN |

4. INDEX TO PUBLISHED MAPS ON THE SCALE OF 1 INCH=1 MILE, NORTHERN CIRCLE.
5. " ., "
6. " " " " . " \quad.
7. INDEX TO DEGREE SHEETS OF INDIA.
8. INDEX TO THE SHEETS OF THE "INDIA AND ADJACENT COUNTRIES gERIES" SCALE $\frac{1}{1,000,000}$
f. INDEX TO THE TRIANGULATION DEGREE CHARTS OF INDIA.
9. INDEX CHART TO THE GREAT TRIGONOMETRICAL SURVEY OF INDIA.
10. " " " MAGNETIC SURVEY OF INDIA.
(Facing page 40).
11. Chart of pendolom stations near the meridian of 78°.

APPEN DIX

LIB'I OP SURVEY OF INDIA PUBLICATIONS	Pagrs.
$165-171$	

RECORDS OF
 THE SURVEY OF INDIA

PART I.-TOPOGRAPHICAL SURVEY.
NORTHERN CIRCLE.
(Fide Index Maps 1 and 4.)
Four field parties worked in this Circle, and in August 1913, a new Party, No. 20, was formed from the Cantonment Section of No. 4 Party, and during the past field season a total area of 27,240 square miles was surveyed consisting of :-

The Riverain Detachment carried out a total of 7,238 linear miles of chaining over a total area of $2,92 \downarrow$ square miles, in the Riverain work, the Khushāb Thal, the Kāngra experimental boundary work and Lower Bāri Doāb Rectangular. No. 20 Party surveyed an area of 11,539 acres in various Cantonments during the year.

Major C. H. D. Ryder, D.S.O., R.E., was in charge of the Circle up to 16th April 1913, and was succeeded by Major C. L. Robertson, C.M.G., R.E., who held charge up to the end of the Survey year.

```
No. l PARTY (KASHMIR).
    My Majur A. A. McHare, B.F.
```

The head-quarters of the party remained at Srinagar (Kashmīr) till the 9th of April 1913 after which date they were removed to Mussoorie.

The area under survey lay in the Kashmir and Jammu State, partly in the Pūnch State and the Mirpur, Riãsi, and Jammu districts and varied from the lowlying flat country bordering on the Pumjab to the high ranges of the Pir Panjāl and partly in the open mountainous tracts of the Kargil and Skārdu tahsils of the Ladākh districts and the Astor talsil of the Gilgit district.

Operations in the field (with the exception of a short break lasting roughly one
Mr. Natha Singh, R.S.
Mr. Lal Siugh, E. B., to 30th of June 1913.
Mr. I’arab Ram.
Mr. Jamia Prasad.
Lower Subordinate Service.
32 Surveyors, etc.
and map drawing continued throughout the year.

Topography.-The area surveyed on the scale of 1 inch $=1$ mile was 3,091 square miles. One camp with 8 surveyors under the successive charge of Messrs. Hanson, Miller and Rennick was formed.

Sheet $43 \underset{i 1}{\mathrm{~K}}$ has also been partly surveyed, but will not be completed until the next summer season.

In addition areas of 684 square miles in sheets $43 \frac{\mathrm{~J}}{\operatorname{sand} 13}$ and $\frac{\mathrm{N}}{1,5,6}$ on the
 inch scale have also been revised.

Triangulation.-Messrs. Rennick and Miller triangulated an area of 1,555 square miles for future detail surveys on the one-inch scale. The total area triangulated in adrance is now 4.065 square miles or roughly 16 standard sheets.

Tracersing.-Messrs. Rennick and Jamna Prasad ran 193 linear miles of height traverse in the flat country of the Jammu district in sheets $43 \frac{\mathrm{~L}}{10}$ and 19 where no triangulation had been found possible nor any previous traverse work ever carried out.

Recess duties.-During the year sheets $43 \frac{\mathrm{~F}}{14}, \frac{\mathrm{~J}}{1 \text { and } \bar{\sigma}}, \frac{\mathrm{K}}{14}$ and $\frac{0}{0}$ were submitted for publication.

Sheets $43 \underset{1^{-}}{\mathrm{K}}$ and $\underset{G^{-}}{\circ}$ by Mr. Hanby and
Shects $43 \underset{{ }_{14}-\text { and } \frac{\mathrm{J}}{1 \text { and5 }} \text { by Mr. Hanson. }}{ }$
The following should be completed br the end of October 1913 :-
Sheets $\mathbf{4 3 - \mathrm { N }}$ and $\frac{0}{2}$ under Mr. Hanby and
Sheets $43 \underset{{ }_{2}, \overline{6}, 10 \text { and } 14}{ }$ under Mr. Hanson.

Cost Rates. -

The health of the party during the winter field season was good, and during the summer season fair. Surveyor Garjman Ray unfortunately died in September 1913, and Mr. Natha Singh and surveyor Ram Saran were sent on leare on account of ill health.

The party was twice inspected by the Superintendent, Northern Circle, and once by the Surveyor General.

No. 2 PARTY (PUNJAB).

By Major E. a. Tandy, R.e.
All work lay in the plains of the Punjab in Ferozepore, Ludhiāna, and

Pebsosmel.

Imperial Officers.
Major E.A. Tendy, K. E., in charge op to 17th Jane-
Lieatenant A. A. Chane. R.E., in charge from 1sth J one.
neighbouring districts with the western part of the Phülkian States, except for 1 sheet on the Hoshiarpur border which contained a bit of Siwàlik hills.

Provincial Officers.

Mr. F. B. Powell, from Oth Juna 1913. J. A, Frecman up to 13th April 1913. Kaunk Singli.
R. E. Saubolle.
E. C. O'sullivan.
J. McCraken.

- I. T'. Hughes up to 27tli April 1913.
, J. A. Calvert.
Lorer Subordinate Service.
56 Surveyors, ete, in field.
Average 28 in recess (excluding absentees).

Topography.--The following 36 oneinch sheets were surveyed and fair drawn during the year:- all sheets in 44 J and $4 \mathrm{i} . \mathrm{N}, 44{ }_{9 \alpha_{13}}^{K}, 44-\frac{n}{3}$ and $44 \frac{\mathrm{M}}{13}$, giving an area of 9,245 square miles.

Also a 6 -inch survey of Māler Kotla and environs, at the cost of the State, area nearly 1 i square miles.

One surveyor was sent to Dera Ghāzi Khān for a month to sketch in the great alterations due to encroachments of the Indus, for iucorporation in the degree sheet of that area. Two or three surveyors were lent for short periods to help No. 3 Party with their traversing and plotting in the field.

No traverse or triangulation was done, as old traverse data will be available for next season's work.

Survey methods.-Sheet $44 \frac{\mathrm{M}}{13}$ was revised by one surveyor in five montho using old contoured sheets, as published in black on 4 -inch and 2 -inch scales. These revised sheets were photographed down to the $1 \frac{1}{2}$-inch scale for fair draming by transter.

The sonth-eastern sheets, falling in the Phūlkiān States, were based on new and rather inadequate traverses hurriedly done by No. 3 Party in the earlier part of the season. The party had to await the completion of the traverse before entering on this ground. Results contained occasional inaccuracies up to 10 chains, but these were for the most part well distributed.

All other sheets were done by revising mounted blue prints of the old 1 -inch maps. The distortion due to mounting these blue prints caused the usual slight inaccuracies of scale everywhere.

No heights or contours were observed in the plains, though the southern portions, nearer the Bikaner desert, have sensible undulations with sandy outcrops. Irrigation however extends over most of the area, and where this is the case contoured oanal maps are available. These contours though accurate in a large sense nre not always topographically satisfactory in shape, so their information was only used to the extent of abstracting heights for the higher and lower parts of undulations, and entering these as clinometer heights on the fair sheets.

Ferozepore and environs was revised on a 3-inch pantographed reduction of old large-scale work; this being pbotographed down to the $1 \frac{1}{2}$-inoh scale for fair drawing. Several important towns were also surveyed on the margins of plane-tables on the $1 \frac{1}{2}$-inch scale, which enabled them to be drawn in much greater detail, especially in the case of inferior surveyors.

The Māler Kotla 6 -inch survey was based on scanty traverse done for the l-inch work, but fair accuracy was secured by fixing good plane-table points over the work before surveyiug. Slight modifications of the usual colour conventions were required in order to meet the necessity of showing boundary walls and hedges along roads, ete.

No beights or contours were taken.
Personnel.-The stafl of the party was temporarily increased during the field season by 11 surveyors, of whom 7 were old soldier-surveyors recalled from their regiments, and not quite up-to-date in their methods Three Rurki-traived soldier-surveyors also joined for instruction.

The sad death of Mr. H. C. H. Cooper from pneumonia in November was a great loss to the party. There were a few cases of small-pox, including surveyors, and some bad cases of pneumonia.

Recess duties.-The completion of the large outturn of fair drawing was only rendered possible by sending an advance section to recess early in March with the first 22 sheets, when the remainder of the party moved into the Phūlkiān States.

Instead of taking $1 \frac{1}{2}$-inch blue prints from the 1 -inch plane-tables direct and having to trausfer and adjust these on to the fair sheet, a modification of the Southern Circle's method of traces was tried, as follows :-

A complete trace was prepared for each sheet on the 1-inch scale, showing graticules, guide lines for marginal typing, and all detail in single lines (no railway or boundary symbols or double lines). These traces were then photographed up to the $1 \frac{1}{2}$-inch scale and printed direct on to the drawing paper. The arrangement proved very satisfactory.
The bulk of the fair drawing was done by three drawing sections and a typing section, the former first doing outline and then passing on to the typing section, after which they completed the ornament of their own sheets. Each section had to examine and correct each stage of a sheet before passing it on for the next stage ; and to ensure this being thoroughly done an extra officer was detailed as examiner, and had to pass each sheet before it was transferred to the typing section or returned back from it. This ensured every stage having two good examinations before the sheet was done, which is a great advantage in dealing with such a large number of sheets, as it reduces enormously the amount of correction and delay in passing the sheets at the end of recess.

In addition to these 36 one-inch sheets and the Māler Kotla map (which was drawn on two 8 -inch shects for reduction to 6 -inch), three sheets of Lieutenant Chase's Nepāl boundary work were drawn ; as well as the compilation and fair drawing of village boundaries for a boundary edition of the 1-inch sheets of Amritsar district. A "gencral" section was detailed for all this special work, and miscellaneous duties.

Sheet $44 \frac{M}{13}$ was the only part of the work not quite completed by the end of recess.

No. 3 PARTY (PUNJAB).
Dy Mr. J. O. Greiff.
The party was originally intender for work in the United Provinces, in

Pbibonnel.
Imperial Officers.
Captain M. N. MacLeod, R.E., in charge up to llih April 1913.
Lieutenant A. A. Chasc, R.E.,
attached up to 31st December 1912.
Lieutenant F. B. Scott, I.A., attached up to 24th May 1913.
Lieutenant R. S. Wahab, I.A., attached up to 11th July 1913.
continuation of the previous year's programme. But early in September it was decided to move the party into the Punjab, to undertake the survey of a particular area required by the Irrigation Department.

With the exception of a strip of hills in the north, the nature of the country surveyed was flat.

Provincial Officers
Mr. J. O. Greiff, in charge from 12th April 1913.
Mr. W. J. Newland up to 19th September 1913.
Mr. E. J. Biggie.
Mr. A. C. Bose.
Mr. P. A. T. Kenny
Mr. A. J. A. Drake.
Mr. F. H. Grant.
Mr. F. J. Grice.
Mr. Moqimnddin,
frow 2:3rd October 1912.
Opper Subordinate Service.
Mr. Mabomed Latf Ali.
Mr. Mahindar Singh.
Lower Subordinate Service.
61 Surveyors, etc.
'Ihe health of the party was good.
Topography.-The country surveyed comprised parts of the districts of Ambāla and Karnāl, and the eastern portions of the Phūlkiān Siates of Patiāla, Nābla, and Jind. Practically the whole of this area, except for the foot-hills of the Punjab Siwāliks in the north, is part of the Indo-Gangetic alluvium plain. It is intersected by many hill torrents, the principal being the Ghaggar, Mārkanda, and Saraswati. The Sutlej and the Jumna rivers also intersected the north and southeast limits of the work. The greater part of it is cultivated, and much of it irrigated by the Sirhind and Western-Jumna Canal systems. Generally speaking it is wall wooded, dhäd being the chiel growth.

The party was divided into six camps, under Lieutenant Wahab, and Messrs. Newland, Biggie, Kenny, Drake and Grice. Later in the season two small sectious were formed, and placed under Messrs. Bose and Grant. The sheets surveyed by each camp were (i) sheets $53 \frac{\mathrm{C}}{10,13,14} ; 44 \underset{-13}{0}$; (ii) $53 \frac{\mathrm{~B}}{1,8}$; $53 \frac{\mathrm{C}}{\overline{1,2,6,0}}$; (jii) $53 \frac{\mathrm{~B}}{\overline{5,11,12,16}}$; (iv) $53 \frac{\mathrm{~B}}{16}$, half of $53-\frac{\mathrm{B}}{\mathrm{B}, 10,14}$, and $53 \frac{\mathrm{~F}}{2,3}$; (v) $53 \frac{\mathrm{~B}}{1,5,0}$,

The work consisted partly of revision survey and partly new surver, on the scale of one inch to a mile.

In Ambāla blue prints of the last published 1-inch sheets were used. In Karnāl the old sheets were found to be of not so good a quaiity, and so reduetions of recently prepared settlement 4 -inch maps were used, the detail being transferred on to the plane-tables by making each village fit with its plotted trijunctions. Except for topngraphical features, these were found fairly correct.

There is a serious discrepancy between the Ambala and Karnal traverses along the common boundary, the best possible adjustment las been made. The error is probably due to the traverses not being sufficiently connected with triangulation.

In the Phülkiān States the work was entirely new, bosed on traverse data.
It was found that the graticules on publisined 1 -inch sheets did not agres with those plotted from rectangular values, the errors amounting to as much as 6 chains. The difference has been eliminated in the fair maps, but the point is worthy of notice for future guidance.

The outturn of the party for the season is as follows:-

'The cost rate per square mile was Rs. 10.6 and Jis. $11 \cdot 5$ respectively.
Traversing.-The area traversed comprised the Native States of Patiāla, Nābha and Jind, in sheets $53 \frac{\mathrm{~B}}{2,3,4,0,7,8,10,11,14}, 53_{1,2,3,3, ~}^{C}, 7,8,11,44 \frac{N}{5,4,7,8,10,11,12,14,15,16}$, $44_{1,2,6,8,8,19,14}^{0}, 44_{1 \dot{1}}^{\mathrm{J}}, 44 \frac{\mathrm{~K}}{\mathrm{i}}$.

Lieutenant Scott was placed in charge of the section, and to it were attached also Messrs. Grant and Moqimuddio.

As no maps were available to indicate the positions of the village trijunctions, it was decided to cover the whole area with a "gridiron" of traverse running approximately along 5^{\prime}, minute graticule lines, and to tie it all together, and to the G. T. stations available, by a network of main traverses, run with a crinoline tape, along railways, main roads, ete.

The total area traversed was $6,058 \cdot 28$ square miles at a cost rate of Rs. $4 \cdot 16$ per square mile.

Recess dulies.-The whole of the area surveyed, comprising thirty 1-inch sheets, has been mapped during recess, and will ;be submitted for publication before the end of November.

The party was divided into seven sections and emplayed as follows :-
(i) Mr. Newland, fair mapping of sheets $53 \frac{B}{4, \forall}, 53 \frac{\mathrm{C}}{1,2,5, \boldsymbol{\theta}, \overline{9}}$.
(ii) Mr. Biggie, sheets $53_{7} \frac{\mathrm{~B}}{11,12,16}, 53 \frac{\mathrm{C}}{10,13}, 44 \frac{\mathrm{O}}{13}$.
(iii) Mr_{r}. Bose on the revision and completion of the traverse computations, and preparation of data for the coming field season.
(iv) Mr. Kenny, fair mapping of $53 \frac{\mathrm{~B}}{10,14,15}, 53 \frac{\mathrm{~F}}{2, \mathrm{y}}$.
(v) lir. Drake, $53_{\frac{1}{1,2,3,5,8,9}}$.
(vi) Mr. Grant, in charge of the typing of all the fair sheets.
(vii) Mr . Grice, fair mapping of $53 \frac{\mathrm{C}}{1 \mathrm{i}}, 53 \frac{\mathrm{~F}}{4,7,8}, 53 \frac{\mathrm{a}}{1}$.

An advance section opened at Mussoorie on the 1st April. An attempt was made to obtain blue print enlargements on the $1 \frac{1}{2}$-inch scale direct from the field sheets, but this was found to be impracticable owing to the irregular distortions in the dimensions of the field sheets. So line traces were made of the field sheets, and fitted on to a Bristol board or sheet of drawing paper within correctly projected graticule lines and the blue print enlargements made from these.

A new kind of type ink, Edward Shackell's No. 1 Blaok Process Proving ink, was tried this year with very satisfactory results.

The cost rate of the fair mapping is Rs. 4'3 per square mile.

No. 4 PARTY (UNITED PROVINCES).

By Captain L. C. Thellier, I. A.
lebsonvel.
Imperial Offeers.
Captain I. C. Thuillier, 1. A., in charge.
Provincial Officers.
Nir. I. W. Biggie.
Mr. G. J. S. Rae.
Mr. C. E. l. Frencli.
Mr. J. C. C. Leara.
Mr. G. E. R. C'orper.
dr. Duni Chaut Puri,
Upper Subordinate Service.
Mr. Molinmmall Husain Khau.
Iower Sulordinate Sertice.
© Surviyors, etc.

The firld head-quarters of the party opened at Fyzābād on 21st October 1912 and closed on 5th April 1913; the recess head-quarters continued at Mussoorie.

Topography.-The programme of this work consisted of survey on 1 -inch scale of sheets $63 \frac{\mathrm{~F}}{12,10}, 6: 3 \frac{1, \overline{2}, 7,0, \overline{0}, 7,8, \pi, 11, \overline{11}, 12,17}{}$ and supplementary survey only of shects $63 \frac{A}{1 x^{2}}, 63 \frac{1}{0}, \frac{E}{10}, 1 i, 13,14,15 . \quad$ Sheets $63 \frac{A}{1}$ and $63 \frac{\mathrm{E}}{11}$ were subsequently cut out of our programme.
The whole aron for survey lay in the districts of Hardoi, Bahraich, Gondá, Lucknow, Bìra Ranki, Rāe Barelī, Fyzābād, Sultānpur, Partābgarh and Fatelipur.

Surveyors were divided into four camps under Messrs. H. W. Biggie, G. J. S. Rae, J. C. Lears and G. E. R. Cooper respectively.

During the field season six soldier-surveyors were attched to the party to replace surveyors transferred to Nos. 2 and 3 Parties.

These soldier-survegors had already done a first period of training in the Survey of India and so were not attached for training but simply to supplement the surveyors of the party who had been reduced by transfers to Nos. 2 and 3 Parties.

Three of these soldier-surveyors were found useful and hardworking field surverors and their services have been asked for again. The other three men were found slow and incompetent.

The average rate of plane-table (excluding the time taken in marching to their work) was 25.2 square miles per mensem for resurvey and 49.9 square miles per mensem for supplementary survey.

Traversing.-This only consisted this season of running supplementary lines of traverse where it was found that surveyors were short of points on which to adjust their work.

The country under survey consisted for the most part of similar country to last season, viz.:-- a flat plain generally well cultivated and interspersed with an abundance of groves and occasional stretches of " Usar" plains. Along the Gogra River occurred a tract of country at lower level than the surrounding plain in which the river swings from bank to bank changing its course nearly every rains.

The chief rivers in the area under survey were a small portion of the Ganges River in the south-west corner of the work, the Gogra River along the centre of the area, and halfway between the Ganges and the Gogrā the Gumtī River. In the north-west corner of the work the Rāptī River ran through a couple of sheets.

Recess Duties.-All fair maps of sheets surveyed during field season will be completed and sent for publication before the end of October.

The health of the party was good throughout the season. Plague again appeared throughout the area under survey but no cases occurred among members of the party.

No. 20 PARTY (CANTONMENT).

By Me. A. Efing.
During the year this party was formed by order of the Government of

Personnkl.

Provincial Officers.
Mr. A. Fwing, Deputy Superintendent in charge, from lat March 1913.
Mr. C. E. C. Freuch, Extra Assistant Superintendent, from 1st October 1912 to 7 th July 1913.

Upper Subordinate Service.
Mr. Dharmu.
Lomer Subordinate Service.
12 Surveyors, ctc.

India to survey cantonments and towns on large scales. And it was decided that the Cantonment Section of No. 4 Party was to be the nucleus of the new party, and its strength gradually increased by recruiting pupil-survegors, and by transferring soldier-surveyors from other parties.

These soldier surveyors are to be trained for a further period of two years in this party and are then to be transferred to the Military Works Department to revise and keep up to date all cantonment plans that have been completed by the Survey Department.

On 1st March 1913, Mr. A. Ewing, Deputy Superintendent, was transferred from the Southern Circle Drawing Office to the charge of No. 20 Parly with orders to increase the number of surveyors in the Cantonment Section.

From 1st August 1913, after reappropriation of budget allotments, this party was transferred from the administrative control of the Superintendent, Southern Circle, and was placed under that of the Superintendent, Northern Circle.

After the completion of the survey of Quetta Cantonment, Quetta Civil Station and Quetta Fort, which were then in hand, orders were received to survey Saugor and the areas under cuitivation within the cantonment boundary. Early in January 1913, a surveyor was sent from Quetta to Saugor to triangulate and traverse that cantonment. In February three surveyors left Quetta to help in the traversing and to do the detail survey after the traversing was completed. The survey of Saugor was completed in June, and from July to September the party was employed at Saugor, the field head-quarters, on the fair mapping of the Quetta and Saugor plans.

An extension of Delhi New Cantonment Area which was surveyed on the 4 -inch scale the year previous was urgently wanted, and Mr. C. E. C. French with two surveyors were employed on this work in February and March, and its fair mapping was completed in June.

In and round Saugor eiglt stations were fixed by triangulation by Gokul Chand, surveyor, with a 6 -inch thendolite and the traversing of that cantonment was based on these stations, and angles of elevation and depression were observed at every traverse station, from which their heights were computed. Also eight stations were fixed by trisngulation for Guna Cantonment with 6 -inch the dolite by Mr. A. Ewing and Gokul Chand. Two trigonometrical stations, viz., Saugor and Hatnī of the Calcutta Longitudinal series and Karāchi Longitudinal series, were visited and found in good order.

In February the field head-quarters were moved from Quetta to Saugor and on the completion of the survey of Saugor three surverors and one draftsman were granted privilege leave. Eighteen sheets of Quetta Cantonment are rearly completed, and will soon be sent for publication; two sheets of Quetta Civil Station, two sheets of Quetta Fort and six sheets of Saugor Cantonment are in hand. Owing to both draftsmen suffering from writer's cramps, one of them liad to take leave, and the completion of the fair mapping of last season's work has been delayed. All the fair mapping will be finished by the end of December when the detail survey of Guna will be completed and its fair mapping takes in hand.

The detail survey was checked by 10.41 linear miles of partal and from 47 fixings by Mr. C. E. C. Freuch, and nearly all the detail survey of Saugor was checked by the Officer in charge.

The areas triangulated, traversed, surveyed and mapped are :-

The cost of the party for 1912-13 is as follows:-
Cost of Cantonment Section from 1st October 1912
to July 1013
R. 18,347

Cost of No. 20 Party from 1st August to September 1913

The programme for the ensuing field season has not been finally settled.
The Director-General of Military Works has proposed Guna, Kamptee and Rajjkot and other cantonments about which he will inform the Surveyor General, when he receives reports from his Divisional Officers about their requirements. Sītābaldī Fort, Khandwā, Agar, Deesa, and Deoli have been suggested so that all the more important cantonments in the Mhow Division will be surveyed before this party is transferred some thousands of miles away.

RIVERAIN DETACHMENT.

By Mr. Maia Das Pori, Rai Sahid.
The field-quarters remained at Multān throughout the field season, and the office returned to Lahore at the eud

Personnal.
Provincial Officers.
Mr. Maya Dis Puri, Rai Sahib, in charge. Mr. Mogimuddin, up to the 22nd October 1912.

Upper Subordinate Service.
Mr. Chuni Lal Knpur.
Lower Subordinate Service. Surveyors, etc.

Setllement Staff.
155 Tnhsildars, etc. of July 1913 for recess.

The detachment continued the work of traversing and lasing down base lines. 31 :) linear and 394 square miles of main traverse, and 3,256 linear and 808 square miles of minor traverse were run. 13,833 theodolite stations were fixed in the area, under water action of the rivers Sutlej, Rāvi, Chenāb, and Jhelum in districts Ferozepore, Lahore, Siālkot, Gujrāt, and Shāhpur, 588 corners of $19($ squares were demarcated with permanent mark-stones on both banks of the Sutlej (districts Montgomery and Ferozepore), Chenāb (districts Gujrāt and Siālkot), and the Jhelum (districts Shālpur and Jhelum) to serve as lases for the future demarcation of boundaries in the bed of these rivers. $3,49 \mathrm{ij}$ plotted and 697 boundary "Masavis" (Settlement mapping shects) of 407 villages were completed and 49 four-inch sheets were traced, and supplied in time to the Settlement Officers of Ferozepore, Lahore, Siālkot, Gujrāt, and Shāhpur. Besides these, 363 miscellaneous traces were prepared, and all the traverse stations marked during the season wrere plotted on 51 four-inch sheets. Three four-inch riverain boundary sheets were plotted and compiled, 2 sheets finally completed, and 4 sheets typed.

The $2 j$-acre rectangular surrey was carred over the remaining tract conmanded by the Lower Bāri Doāl canal in coutinuation of the last year's work. Fourteen thousand six hundred and twenty-seven 25 -acre rectangles were broken. Nearly 56 per cent. of the work was tested by the tahsildars, nail; tahsildars, and the survey officers, and 16 per cent. was checked with thendolite traverse. 1,059 linear miles were traversed, and 3,895 theodolite stations were fixed. This work is now completely finislied. In all, 73,791 trventy-five acre rectangles were demareated in 2,883 square miles during the last three seasons at a total cost of Rs. 3,18,278 against an estimated expenditure of Rs. 4,63,583 for cutting 2,500 square miles into $2 \bar{j}$-acre rectangles.

The Khushāb " Thal" (sandy area) survey was suddenly taken up during February 1913 at the special request of the Punjab Government, and was temporarily stopped during May 1913. Points were thrown about $\frac{1}{2}$ mile apart. All existing trijunctions, boundary turnings, and conspicuous marks were picked up. 1,967 linear and 1,070 square miles were traversed, and 3,808 theodolite stations fixed. 258 dressed stones and 84 iron tubes were embedded on seleoted stations to facilitate future survey and demarcation of fields and boundaries. 591 plotted Masivis on the scale of 12 inches to one mile, were supplied to the Settlement Officer, Shāhpur, early in September 1913. Besides this work 604 Masävis of 36 villages (scale 8 inches=one mile) were reduced to the scale of 4 inches to one mile. The boundaries of these villages were compiled on 29 four-inch sheets with the help of points fixed during the year, showing discrepancies of over two chains and were traced on 63 Masävis"for the Settlement Officer, Shābpur.

With a view to assist the Settlement Officer, Dera Hamirpur (district Kāngra) in the most difficult part of his work and to utilize the experience thus gained for the future cadastral surveys of the remaining tahsils of the Kangra district, the Kängra work was experimentally started during the middle of April 1913 and closed on the 20th July 1913. It was based on the triangulation of old No. 18 Party (Himālaya). Yoints were laid out about 5 to 15 chains apart, in suitable places under cultivation and along tikā (sub-village) and village boundaries by triangulation and traverse using subtense bar where required. The plots were prepared for each tikē (sub-village) separately on the scales of 20,40 , and 80 $k a r m s$ to one inch (the length of a $k a r m=575$ inches) according to the nature of the ground.

637 linear miles of traversing and 81 square miles of triangulation were carried out, and 1,840 stations were fixed by theodolite.

784 plotted Masaivis of 256 tikäs (sub-villages) were supplied to the Settlement Officer, Dera Hamirpur, during the summer.

The experiment has proved successful, and work in the other tahsils of the Kāngra district will be commenced duriner next cold weather.

The riverain area was broken raviny, sandy, marshy, shrubby, and in parts oultivated. The Lower Bāri Doāb tract was flat, heavily wooded, and sparsely inhabited. The Khushāb "Thal" (sandy area) consisted of rolling sand hills covered with scanty scrub, and it few stunted trees and villages, scattered here and there, chiefly inhabited by graziers and camel-owners, with little or no water. The Kāngra portion was hilly, jungly, and cultivated.

The health of the detachment "as on the whole satisfactory. One tindal died at home while on departmental leave.

The total expenditure of the detachment from the 1st October 1912 to the 30th September 1913 excluding the pay of temporary riverain khalasis, and including Rs. 6,180 on account of last year's expenditure for the Lower Bāri Doäb work, was Rs. 1,15,632 as detailed below:-

SOUTHERN CIRCLE.

(Fide Index Maps 2 and 5.)

The Southern Circle was under the superintendence of Brevet-Colonel T. F. B. Renny-Tailyour, C.S.I., K.E., up to 15th April 1913 and under Lieu-tennnt-Colonel F. W. Pirrie, I.A., for the remainder of the year.

The Circle consisted of Nos. 5, 6, 7 and 8 Parties and No. 4 Drawing Office.

During the year 13,349 square miles were surveged, 14,394 square miles were triangulated, and 205 linear miles were traversed by theodolite.

The field surveys consisted of :-

1,086	square	miles of	$\frac{1}{2}$-inch survey.
6,093	$"$	$"$	$"$
l-inch survey.			
5,155	$"$	$"$	$"$
l-inch revision survey.			
568	$"$	$"$	$"$
$1 \frac{1}{2}$-inch survey.			
4.47	,,	$"$,
2 -inch survey.			

'I he area surveyed is relatively greater than was done during the previous year. The smallness of outturn is caused \bar{y} e the intricate underfe:tures in the Central Provinces and Hyderäbad State and the excessive difficulty of the dense forest country in the extreme south of the peninsula. It was again found impossible to shew adequately on the 1 -inch scale in the field the mass of detail in the lowlying ground along the western sea coast in purts of Madras and Travancore State, so the $1 \frac{1}{2}$-inch scale was substituted where necessary and the small jucrease in cost was amply justified by results.

The Photo-Zinco Section did a great deal of work during the year to assist the work of parties chiefly at the close of the field senson and towards the end of recess.

The accommodation at present is inadequate and the cameras and other apparatus cannot be properly protected from the weather, and during the rainy season work was at a stand-still.
'The following work was done during the verr in the Photo-Zinco Section:-

Description of work.	No. 5 Party.	No. 6 l'arts.	$\begin{gathered} \text { No. } 7 \\ \text { P'arty. } \end{gathered}$	$\begin{aligned} & \text { No. } 8 . \\ & \text { larty. } \end{aligned}$	'Totai.	Remaris.
Reproductions to full scale.			1	...	1	
Enlargements	43	5	28	15	121	
Reductions	44	27	122	20	213	
Originals vandyked	14	17	23	13	67	

[^0]varies greatly it will probably be best to have the names written in skeleton copies of tine degree sheets in their proper positions and lave them again verified locally through Settlement Commissioners or olber ageney.
2. Forest and other maps originally surveyed un seales larger than the 1 -inch at various periods rary much in quality and none of thems can be reduced and incorporated in the fair majs without again undergoing sopplementary survey, and the following has been found the most suitable procedure in the Southern Circle. The large scole maps falling in the area included in the edsuing seison's programme were photographically reduced to the $1 \frac{1}{2}$-inch scale in blue colour. These reductions were then inked up in black for further reduction to the 1 -inch scale, and carofully fitted on to the $1 \frac{1}{2}$-inch projected sheets by means of the graticule lines and plotted triangulated points. These reductions were then reduced to the 1 -inch scale and printed in blue on Bristol boards or drawing paper mounted on cloth over mill board. The graticule was subsequently diawn in black and any exterior triangulated points plotted and they were then ready for the field.
3. In handing over the Southern Circle Colonel Renny-T'ailyour stated that it is always better when the local soale of regular survegs is the 1 -inch or $\frac{1}{2}$-inch, larger scale survegs should be carried out at least one eeason ahead so that they may be available when the regular surveys are talsen up and whenever possible this procedure will be followed.
4. As mentioned in the Records Volume III, experiments were continued in the Circle in order to prevent altogether or to reduce to a minimum the expansion and contraction of monnted plane-tables in the field. Paper mounted on clicth pasted on wooden plane-tables expands aud contracts according to the changing temperature and humidity of the atmosphere but chiefly across the grain of the wood of the plane-table and not uniformly in all dirctions. To remelly this four methods bave been under trial for some time, as folluws:-
(a) Aluminium plane-tables.
(b) The use of Bristol boards in plate of draming paper.
(c) The use of drawing paper mounted on cioth over mill board.
(d) The use of special thick drawing paper unwounted.
(a) Aluminium planc-tables were successful in overconing unequal contraction and expansion and reduced the alteration in graticule to a negligible quantity, but the tables as at present constructed do wut remain flat in use but sag at the edges and the Officer in charge No. 6 Party has suggested that the bracing be strengthened which ronid probably overcome this evil, but nltogether the great expense of aluminium plane-tables does not justify their use.
(b) Six and four ply Bristol boards were used during the field season and were specialiy uselul in the comparatively dry climate of the Central Provinces. The change due to varied temperature and humidity was very small, and nearly proportionate in all directions and their use io completely justified in the case of all experienced surveyors who are clean workers, and have little erasure to do in the field. The Bristol boarda should not be fastened down to the plane-table but loosely secured at the corners by suitable clips. In order to make the use of Bristol bosids in place of drawiug paper thoroughly satisfactory height indicators and scales of feet and chains should be printed on the sam quality of Bristol board. The disadvantages of bristol boards are that they must be packed flat and not rolled and they cannot be traced through a tracing glass and any erasures are difficult to carry out.
(c) In localities where there is excessive humidity and great changes of humidity during the field scason draving paper mounted on cloth over mill board is more suitable than Bristol boards for work in the field. The change in graticule is very small and uniform in all directions, though the precautions as regards mounting and secaring the mill boards advocated hy Colonel Renny. Tailyour in the Records Volume III should be carefully carried out.
(d) Thick drawing paper (Whatmau's, Imperial, 300 lba .) specially prepared by Messrs. Dalston was tried with success and was used anmounted and only loosely secured at the corners by clips, but the paper should be barder in texture and harder and smoother in surface and untila further consignment of this paper is received and further tried under varied conditions it would be premature to give a final opinion as to its utility.
5. The ordinary survey pattern clinometer as at present made in the Matheinatical Instrument Office, Calcutta, is a very gond instrument if intelligently used and leept in proper adjustment and is quite accurate enough for all ordinary contouring parposes but to get the best work out of these instrumente phey require to be very carefully adjusted at the time of issue and carefully handled and readjusted by inspecting officers in the field and the following method of doing so is suitable:-

The instrument should be taken from ita bor and the vanes set $\mu \mathrm{p}$ and then it should be laid on its side on a piece of machine ruled section paper and the vanes adjusted so that they are at right anglea to the base plate. The distance between the zero of the tangent acale to the centre of the axis of vision of the eyepiece should then be checked. This in most clinometers is 8 inches.
The distances from -40 and +10 to the centre of the axis of vision should then be verificd, those are usually $8 \cdot 616$ inches but if the horizontal line is not 8 inches these distances will be different but can easily be calculated. After the above preliminary adjustments have been made the level can then be adjusted against the natural tangents obtained from theodolite vertical angles. The advantage of using the ordinary clinometer whenever possible is that there is less strain on the eye if the distant objecta are distinct and clearly defined than in using any form of telescopic clinometer. In particular localities where ill-defined distant objecis have to be observed in taking heights the telescopic clinometer as invented by Captain Pye is very suitable and was used with succers in the $\frac{1}{2}$-inch survey of Hyderäbind State by No. 6 Party and the officre in charga of that party will use it extensively for the enme purpose during 1913-14 and considers that it will be of great use also in adjusting ordinary clinometers in the field. The advantage of these instruments is the increased accuracy and the disadvantage is that index errors are likely to develop which will entail frequent checking agninst theodolite obseivations. The strain on the eye in using any form of telescope is also a disadvantage.
6. In traversing forest boundaries with theodolite it is often impossible, owing to local conditions, to
follow the actual line and the pillats hive to be tixed by off-sets. With the concurrence of the Chief Conservator, Central Provinces, the forest boundaries were fised by No. 6 Parly by plane-table traverse on the 4 -inch scale and the surrounding detail carefully surreged at the same time oa that scale; this arrange nent is not only less expensive but more accurate and convenient and seems to meat with the requirements of the Forest Drpartment.
7. The old Mysore l-inch bheets were found very accurate but wanting in mach detail required for a modern map, and required supile:nentary survey in the field.

The l-inch compilations supplied by the Director, Madras Revenue Survey, from the work of his depart. ment although not consistently of the sams quility were in general very accurate and of great, assistanco to No. 7 Party.
8. The opinions of officers in charge of parties regarding the special blue tinted paper sent for trial for the $f_{\text {air }}$ maps are on the whole unfavourabl?. The surface seemed to be greasy and unsuitable for either typing or fine drawing. The only favourable report was received from No. 8 Party where the blue tinted paper was found suitable for his heavy outline and hill sheets. However, there is no doubt that if the suiface could be made smoother and harder the blue piper woald be more reatful to the eyes of draftamen and mip examiners.
9. A sepirate tgpe sheet was used by No. 6 Party, but the system is not advocated as it entails great inconvenience to examining officers aud will cause extra expense in reproluction.
10. The ure of two ply Bristol boards was made by No. 6 Party fur fair mapping and the procedure is advocated and these thin Bristol boards mere found nearly as pliable as drawing paper. The detnil could be drawn finer and the typing was sharper and clearer than on drawing paper.
11. The epecial roller drawing pens made at the suggestion of the Officer in charge of No. 5 Party by the Mathematical Instrument Office for roads and boundaries weie used with success and the pricedore adopted by No. 8 Party seems the most suitible πh ch $i+$ to put the symbols on the fair maps in blue by means of the roller pens and then ink them over i) black whe: any change of emphasia can be given as required.
12. The most sutable methods of dealing with the field maps on return to recess seemed to be as fullows:-
(a) The field maps were enlarged indiridually to the $1 \frac{1}{2}$-inch seale and from thege a combined trace was male on a projected sheet of tracing paper and the whole was vandyked oa to drawing paper or two ply bristol boards in blue.
(b) The largest plane-table section falling in a particular 1 -inch sheet was completed up to graticuly limits by pasting on traces of the other plane-tables and then the whole was enlarged to the $1 \frac{1}{2}$ inch scale and printed by photo-zincography in blue.
When there is much distortion or inconsistent change of graticule and in consequence adj istments were necessary, the first fystem mas foun the best.

When nearly the whole shect was surveged on one plane-table and the graticule was about right the secon 1 system wns found the best.

No. 5 PaRTY (CENTRAL PROVINCES).

Br Caftaiy E. C. Bater, R.e.

The programme of the party included survey and revision survey on the

Personvel.
Imperial Officers.
Captain E. C. Baker, K E., in charge, fron 25th Octoler 1912.

Captain K. W. Pye, R.E., to 21st May 1913 In charge from lat to 24 th October 1912.
Licuteunat R. S. Walab, I.A., from 12th July 2913.

Provincial Offects.

Mr. F. P. Traleh
Mr. J. H. s. Wilson.
Mr. S. S. Mca'Fee Fieldiug.
Mr. C. West.
Mr, F. C. Pileher.
Mr. Munahi Lal.
Mr. C. O. l'ieard.
Upper Subordinate Servie.
Mr. Ekuath Batu.
Mr. 1 mm Naraynn Hastir.
Lower Subsrdinate Service.
33 Surveyors, etc.

1 -inch scale, and triangulation, in parts of degree sheets $55 \mathrm{~J}, \mathrm{~K}$, and O , c smprising portions of Hosbangābäd, Narsinghpur, Chindwāra, Betūl, Seoni, Nāgpur, Bhandāra, Bālăghāt and Wardhā districts of the Central Provinces, and the Ancraoli district in Berār. The field season opened at Jubbulpore on October 21st, 1912, and closed at Chhindwāra on April 14th, 1913. From November 8tb, 1912, the head-quarters of the party was located at Chhindwāra. The health of the party was fair.

Topography.-To carry out the 1inch survey, and the 1 -inch revision sur- vey of reductions from 4 inoh forest surveys, foar camps wero formed and the following allotment of work was made:-

No. 1 Camp.-Sheets $55 \frac{\mathrm{~J}}{3,4}$ and part of $55 \frac{\mathrm{~J}}{10}$ in Hoshangābād, ${ }_{\text {E }}^{\text {E }}$ Betūl and Chhindwãra districts.

No. 2 Camp.-Sheets $55 \frac{0}{3,0,7}$ and part of $55{ }_{10}^{\circ}$ in Nāgpur, Seoni and Bhandāra districts.
No. 3 Camp. -Sheets $55_{-\frac{0}{811, ~} 1^{2}}$ and nearly all of $55{ }_{i 0}^{0}$ in Nāgpur, Bhandāra, Seonì and Bāläghāt districts.
No. 4 Camp. -Sheets $55 \frac{\mathrm{~K}}{14,15}, 55 \frac{\mathrm{O}}{2}$ in the Chhindwāra and Nägpur districts.
The survey if all the abore sheets was completed. The outturns were 2,575 square miles of 1 -inch survey, and 1,115 square miles of 1 -inch revision surrey, making a total of 3,690 square miles. Sheets $55 \frac{3}{3,4,10}, 55 \frac{0}{2,0,10}$ contained heavily wooded and somewhat hilly country. Sheets $55 \frac{\pi}{16}, 55 \frac{0}{4,8,12}$. were flat or undulating, while in the remainder of the sheets the nature of the country was raried.

Triangulution.-Four officers were employed on triangulation, and completed sheets 35 lation of the last named two was computed in the field and the detail survey of these two sheets was included in the programme of the party. The country triangulated extended from the steep north-western slopes of the Sātpurăs across the rolling plateau, and down into the Nagpur plain, and amounted to 4,972 square miles.
liecess duties. -The fair mapping of all the fourteen sheets surveyed was completed by the end of the recess season. The computation of the triangulation done during the field season was completed during the recess. Degree charts 64 A and 50 O with tables of data were prepared.

No. 6 PARTY (BERĀR).
By Limetenant C. G. Lewis, r.e.
The field head-quarters were again located at hāsim. The season opened

PERsosnel.
Inpierial Officers.
Major H. Wond, R.F., in charge up to 30th May 1913.

Lientensint C. (i) Lewis, R.E., in chnrge from 31st May 1913.
$\boldsymbol{P}_{\text {rorincial }}$ Officers.
Mr. E. A. Meyer.
Mr. F. M. Eitchen.
Mr. R. B. Gildea.
Mr. J. o'C. Fit/patrick.
Mr. A. I. Moore.
Mr. A. V. Dick-on.
Tpper iubo dinate Sarrice.
Mr. Lachuma Daji Jadu, R.li.
Mr. Dharmu.
Lorer Subortinate Survice.

33 surveyors, etc. on the 28th Octoleer 1912 and closed on the 13th April 1913. The health of the party was very good.
The party was employed on $\frac{1}{2}$-inch, $!$-inch and 2 -inch surveys and triangulation in the Yeotmāl, Akola and Buldāna districts of Berār, in the East Khāndesh district of Kombay and in the Adilābād, Nānder and l'arblani districts of Hyderābād.

Topography.-The surveyors were divided into three camps. Lieutenant Lewis was in charge of the $\frac{1}{2}$-inch survey in sheet $5\left(\sigma_{\mathrm{s} . \mathrm{E}}^{\mathrm{E}}\right.$ and the pupils' camp in sheets $56_{\frac{1}{10,15,16,15}}$ on the 1 -iuch scale, Mr. Mejer carried out 1 -inch survey in shects $56 \frac{\mathrm{~F}}{10,13}$, for the first two months of the season and then transferred his surveyors to the 2 -inch survey of reserved
 camp remained in the field until the middle of May, it was found impossible to complete the programme of 2 -inch work. Mr. Gillea was in charge of 1 -inch survey in sidects $50{ }_{\frac{1}{1,2,5,0}}$ and 2 -inch survey in sheets $50 \frac{1}{2,3}$. One $\frac{1}{2}$-inch sheet was taken up. The outturn on this scale excceded expectations, amounting to over 60 square miles per man per month in intricate country.

The country under survey was of a varied nature, consisting for the most part of intricate forest-clad hills, and also of large areas of flat cultivated lands in the Pengangà Valley.

The outturns on various scales were as follows:-
$\frac{1}{2}$-inch survey $], 056$ square miles.
1 -inch survey 1,508 square miles.
2 -inch survey 431 square miles.
Triangulation. - Mr. Kitchen was employed on triangulation in sheets $56_{10,11, \frac{A}{12,14,16,16}}$ and Mr. Fitzpatrick in sheets $55 \frac{\mathrm{D}}{\sqrt{6,6,9,19}}$. The country under triangulation was open, and flat or slightly undulating throughout. The area triangulated was 2,795 square miles.

Traversing. - With the concurrence of the Chief Conservator of Forests, Central Provinces, no theodolite traversing was carried out but all the boundaries of reserved forests under survey were traversed by plane-table on the 4 -inch scale, by the surveyors employed on the detail survey, as it was found that this method ensurel better agreement with the topographical detrils than theodolite traverses. The amount of traversing thus carried out was 985 linear miles.

Recess Duties.-During the recess the party completed the mapping of the following sheets on the $1 \frac{1}{2}$-inch scale :- $56_{\frac{2}{2,10,13,14,15}}, 56_{\frac{1}{1,2}, \frac{1}{3,5,0}}$ (sheets $56_{11,15}^{E}$ and $56 \frac{1}{3}$ contain only small portions of Berar which have been surveyed on the 1 -inch scale), and on the $\frac{3}{4}$-inch scale, sheet $56 \frac{\mathrm{E}}{\mathrm{E}, \mathrm{E}}$. $\quad \mathrm{Mr}$. Gildea was in charge of the mapping section.

The computations of the triangulation done during the field season were completed. Triangulation charts with tables of data for 55 D and 56 E were prepared but not fully completed.

[^1]No. 7 PARTY (MADRAS).
By Captain J. D. Canpiell, R.E.
The programme of the party included survey and revision survey in the
personnel.
Imperial Officers.
Captain J. D. Camphell, R. E., in charge.
Provincial Offers.
Mr. J. O'B. Jonaghey.
Mr. P. Il. Anderson.
Mr. H.D. W. Stoteshary
Mr. Haji Abdal Rahim, K.B., from lsi Octoher 1912.

Mr. H. H. P. Hutterfield
Mr. J. C. St. C. Pollett
Vpper Subordinate Sertice.
Mr. Kodanlera Mandanua.
Lower Subordinate Service
29 surveyire, etc.

Malabar, South Kanara, Salem, Coimbatore and North Arcot Districts of Madras and the Bangalore, Kolār, and Mysore districts of Mysore, and triangulation in the Salem, Chittoor, and North and South Arcot distriots of Madras.

The head-quarters of the party remained at Bangalore and the party took the field on various dates between 1st September and the 10 th November 1912, and returned to recess quarters about the 20 th April 1913.

The field work carried out was as follows :-
Survey on the 2-inch scale of 13 square miles of reserved forest in sheets $57-\frac{H}{9,4,8,13}$.
Survey on the $1 \frac{1}{2}$.inch scale of 312 square miles in sheets $48-\frac{\mathrm{P}}{4,-8}$.
Survey on the 1 -incl scale of 652 square miles in sheets $57_{\overline{3,4,7,8,10}}$, $57 \frac{11}{11,12,13,15,18}, 57-\frac{\mathrm{L}}{1,5}$.
Revision survey on the 1 -inch scale of 4,040 square miles in sheets $57 \frac{6}{8,12,16}$, $57 \frac{\mathrm{H}}{3,45,7,8,1,10,11,13,13,16,16}, 57 \frac{\mathrm{~L}}{1,5}$.
Triangulation of shects $57 \frac{\mathrm{~L}}{\mathrm{\theta}, 10, \overline{11}}, 57 \frac{\mathrm{~L}}{12,13,14,16,16}$ and $57 \frac{\mathrm{P}}{7,2,9,4,5,0,7,8}$.
The country surveyed is extremely varied in character. It includes the flat intricate coast, the undulating jungle-clad foot hills of the Western Ghāts, the densely wooded billy country on both banks of the Caurery River and the open, undulating Mysore plateau.

Topography.-The 2 -inch forest survey presented no difficulties. The work in sheets $48 \frac{\mathrm{P}}{\boldsymbol{i}, 8}$ was done on the $1 \frac{1}{2}$-inch scale owing to the extremely intricate nature of the country and the large amount of detail. The 1 -inch survey was assisted by the maps supplied on the 1 -inch scale by the Madras Revenue Survey which were of great assistance especially as regards names. The detail was found to vary in accuracy and for this reason the maps have to be used with considerable caution. It is hoped that, in future, more information will be available beforehand as to their probable accuracy in different localities.

The 1 -inch revision survey came under two heads :-
(a) Revision of the old 1-inch Mysore sheets which were found very accurate. They had, however, to te very considerably supplemented as they contain but little of the detail which is shown on a modern map.
(b) Revision of the 4 -inch forest maps which were found quite accurate and were only checked, slightly supplemented and recontoured. The 4 -inch forest maps were reduced to the $1 \frac{1}{2}$-inch scale in blue, and after compilation on projected sheets on that scale were inked up in black and further reduced and printed in bluc on the 1 -inch scale. A great saving of time and increase of accuracy were obtained by working on these 1 -inch reduc. tions in the field.
Triangulation.-The triangulation presented no difficulties. A chart on the $\frac{1}{4}$-inch scale, supplied by the Madras Revenue Survey, enabled the triangulators to pick up a large number of revenue traverse stations. The values obtained were found to agree with the revenue values and in flat country where fixings are unobtainable the village trijunctions, which are all revenue traverse stations, can be confidently used by the plane-tablers as closing points for traverses.

Recess duties. -The 18 completely surreyed sheets will be submitted for publication by the end of recess. Index degree maps have been prepared of $57 \mathrm{~L}, \mathrm{O}, \mathrm{P}$, and 66 D . The computations of the season's triangulation have been completed.

Triangulation charts are somewhat in arrears as, owing to the heavy programme of computations and mapping, no assistont has been available for the work.

No. 8 PARTY (MADRAS).
By Captain C. M. Bhowne, D.S.O., B.E.
The work carried out by the party was of the same nature and in continua-

Personnel.
Imperial Officers.
Contain C. M. Browne, D.S.O., R.E., in charge. Ciptain R. Foster, I.A.

Provincial Officers.

Mr. W. F. W. Adame.
Mr. S. F. Normmi.
Mr. J. H. Williams.
Mr. M. Mahadeva Mulaliar.
Mr. Balaji Dhondibu Mandine, up to lst November 1912.

Mr. M. S. Ganesa Aiyar.
Upper Subordinate Service.
Mr. Anentarao Dhondiba, Rao Sahib.
Mr. K. Naraynunsvami Chetti, prowoted from lat August 1913.

Lower Subordinate Service.
36 Surveyors, ete. tion of that of the previous year and covered parts of Malabar and Madura districts of Madras and the State of Travancore. It comprised surveys on the 1 -inch and $1 \frac{1}{2}$-inch scales, and triangulation and traversing in advance for future surveys on these scales. Sheets $58 \frac{\mathrm{c}}{6,10,11}$ and $58 \frac{\mathrm{a}}{1}$ were entirely surveyed, sheets $58{ }^{\frac{\mathrm{c}}{14}}$ and $58 \frac{\mathrm{G}}{2}$ were completed and sheets $58 \frac{\mathrm{c}}{7,15}$ were commenced.

The party left Bangalore on the evening of the 15th November and arrived next day at Ernākulam. Bcyond that place in order to reach the head-quarters of detail camps at Kumili, Kottayam, Changanächeri and Känjirapalli, the journeys had to be made by boat and marching.

The head-quarters of the party was located at Pirmed.
It was with great difficulty, although ample notice was given to the local authorities, that sufficient carts were obtained at particular places for the conveyance of the head-quarters and detail camps to their destinations. Next year these difficulties may with care be avoided and the various detachments will be able to reach their ground by rail and boat.

The work closed in the field on various dates in May 1913 and opened in recess at Bangalore in June.

The health of the party was on the whole good considering the climate encountered, until towards the close of the field season when all suffered more or less from fever and boils and bowel complaints.

Topography.-The topographical work was distributed as follows :-
Camp No. 1.--Worked in sheets $58 \frac{\theta}{1,2}$ under Mr. Norman chiefly in Travancore State and partly in Madura district on the 1 -inch scale. The area dealt with excluded a portion of sheet $58 \frac{\mathrm{G}}{2}$ which fell in the Periyàr-Panbiyār catchment area which had previously been surveyed on the 2 -inch scale in 1910-11. The portion of Travancore in sheet $58 \frac{\mathrm{G}}{6}$ was too small to justify its being published as a separate shect so it was included as an outrigger to sheet 58 -

Camp No. 2.-Under the supervisiou of Mr. Adams worked in sheet $58 \frac{\mathrm{c}}{6}$ and part of shect $58-\frac{\mathrm{c}}{14}$ chiefly in Travancore State with small portions of the Malabar district. The former shect was surveyed on the $1 \frac{1}{2}$-inch scale and the latter on the 1-inch scale.

Camp No. 3.-Worked in sheet $58 \frac{\mathrm{c}}{11}$ and remaining portion of sheet :9 $\frac{\mathrm{C}}{10}$ on the 1 -inch seale under the supervision of Mr . Williams.

Cannp No. 4.-Worked in sheets $58 \frac{\mathrm{c}}{14,15}$ on the 1 -inch scale under Mr. Anantarao Dhondiba Mandhre, R. 8.

As it was found impossible for any but the best draftsman to show, adequately in the field, the intricate coast country in the Malabar。district and in
the Travancore State on the 1 -inch scale, the $1 \frac{1}{2}$-inch was substituted and the area done on this scale was 256 square miles. The country was covered with palm groves and huts, some of which were of a permanent character but the majority temporary structures, and in order to make the resulting map clearer and more easy to read the latter were not surveyed and a footnote will be added to the published sheet to slow that the whole country, where not under cultivation, consists of a dense palm grove dotted about with numerous scattered huts.

The total area of 1 -inch survey was 1,358 square miles. The character of the country was very varied. Sheets $58 \frac{\mathrm{c}}{10,11}$ were densely populated and the detail especially in the valleys was very intricate and the numerous low hills all of about the same height made the contouring laborious. Sheet $58 \frac{\mathrm{c}}{14}$ included the western slopes of the hills and the country in the higher ground was more open but the valleys were for the greater part covcred with forest or rubber estates and gardens. Sheets $58 \frac{0}{1,2}$ include the Cardamom Hills, a large portion of which are covered with dense forest except towards the east where they are grassy and open. The grass is often very high and as difficult to survey as forest except for a short time after being burnt in the spring. Part of sheet 58 $\frac{9}{2}$ was surveyed previously in $1910-11$ as part of the Periyār and Pambiyār catchment area and the work was incorporated by reduction.

From the above remarks regarding the nature of the country and from last year's report, it is clear that no large outturn can be expected from No. 8 Party in the field till more open country is met with.

Triangulation.-The country triangulated was very varied in character and extended from the coast of Travancore over the Ghāts into the plains of Tinnevelly and Madura. Mr. Ganesa Aiyar was under instruction in trian. gulation with Mr. Mahadera Mudaliar for part of the field season and afterwards carried out the triangulation of 2,035 square miles in sheets $58 \mathrm{D}, \mathrm{G}$, and H .

Traversing.-Theodolite traverses were carricd out by Traverser Keshava Vaijnath Joshi and unclassed surveyor D. R. Joseph and pupil-surveyor N.
 it is hoped that in 1914-15 hardly any traversing will be necessary.

Wellington Cantonment.-At the beginning of May K. V. Joshi traversed the boundary of Wellington Cantonment and a revised list of distances and bearings were subsequently supplied to the Military Works Services.

Captain Foster was detailed at the beginning of May 1913 to test the accuracy of the Wellington Cantonment map, and to report what is neccssary to be done in order to bring it up to date. Λ revision of the contouring details and boundaries seems from Captain Foster's report very desirable but should only be undertaken after the military authorities have definitely decided or carried out alterations which are, at present, only proposed.

In last year's report reasons were given for selecting on the ground buildings of sufficient importance to be shown on the $\frac{1}{4}$-inch degree sheets and this work was done at the close of the regular field work, and the only area stil remaining to be dealt with falls in shects $58_{\frac{\mathrm{l}}{1,2,3,5,0}}$ and it is proposed to detail a surveyor to complete the work in 1913-14.

Recess duties.-The amount of drawing in the party's sheets is very great and it is improbable that the mapping of the field work can be completed before
the party again leaves for the field. The area drawn, 1,663 square miles, is 216 square miles in excess of last year which is very satisfactory. In all probability the drawing of four sheets will be unfinished when the party again leaves Bangalore, and the drawing of these will be completed by No. 4 Drawing Office, and the sheets will be finally examined by the Officer in charge No. 8 Party when he returns to recess quarters in 1914. In recess the computations of all traversing were completed but those of the triangulation were not quite finished as it was impossible to spare enough men from the fair drawing, but none of the data uncomputed, will be needed for the coming field season.

Note.-An improvement on form P. 21 (Computation of Clinometric Heights) was derised in this party during recess 1912 and was used throughout the party during the fiell season. It was found to be very much easier and quioker to use and to checlt than the old form $P .21$ and it is understood that a form designed on similar lines renumbered P. 17 and bound in books has been approved by the Survejor General and will be introduced throughout the Department. Metal corner clips were used to fasten mill boards to the plane-table and were found to be on the whole satisfactory and they will be given a further trial in the coming field season. An aluminium plane-table was tried but was found to have certain; defects. If an improved pattern can be supplied a further trial will be given to it.

EASTERN CIRCLE.

(Fide Index Maps 3 and 6.)
The circle was under the superintendence of Brevet-Colonel G. B. Hodgson, I.A., up to 27th April, from which date it was under Lieut.-Col. C. H. D. Ryder, D.S.O., R.E.

11,836 square miles were surveyed during the year, consisting of -

5,059	square miles of	l-inch survey.
4,539	ditto	l-inch supplementary survey.
592	ditto	l-inch revision survey.
1,189	ditto	$\frac{1}{2}$-inch revision surves.
407	ditto	2 -inch survey.

No. 5 PARTY (BIHĀR AND ORISSA).
by Captain R. H. Phillimone, r.e.
The party continued work in Singhbhüm and Rānchī districts, working along the northeru border of the Orissa Feudatory States, and completed the survey of sheets Nos. $73 \frac{1}{0.10,11,12,13,14,15,16}$ and $73_{\overline{1,2,3,5,6,6,7, ~}, \frac{12}{2}}$. Such portions of the Orissa Feudatory States as fell into this area were surveyed on the $\frac{1}{2}$-inch scale.

The reserved forests of Singhlhūm district which had been previously surveyed on the 4 -inch scale were now revised on the 1 -inch scale, and a few scattered blocks of protected forest were surveyed on the 2 -inch scale.

The remaining area had all been surveyed cadastrally within the last ten ycars.
The party assembled in Chakradharpur on November 11th; some men had to be kept in the field till the end of May to complete the programme, though a start was made with fair mapping from lay 5th.

April and May were very hot months and there was a good deal of shirking amongst the surveyors, several of whom were discharged at the close of the field season.

Topography.-The country under survey lies along the borderland of Chotia Nagpur and the Orissa Teudatory States. The sheets to the north lay on the Rānchi plateau; the country here was well populated and cultivated, hoalthy and very easy to travel about in ; the ground was undulating, with a general level of from 1,500 to 2,000 feet, with protuberances of bare rocky hills of gneiss. Detail could not well be sketched, but fixings were readily made and work could proceed rapidly.

Towards the south, the plateau drops steeply, and the ground becomes broken, intricate and wooded. The western corner of Singhbhūn district is covered with dense sall forest, and is a mass of hills which rise in some places to peaks nearly 3,000 feet above sea level. Villages and cultivation are here more scarce, and survoyors suffered a certain amount from malaria.
$\frac{1}{2}$-inch survey in Gangpur State could not proceed very rapidly as the hill features did not stand out with prominence. In the low wooded hills surveyors found it difficult to get fixings, and in many places filled in detail by pacing from one point to another.

The party was divided into four camps, the head-quarters being located at Pānposh in Gāngpur State.

Camp No. 1.-Under Mr. B. C. Newland numbered ten plane-tablers to start with, and surveyed the north-eastern sheets of $73 B$ on the Rānchi plateau.

Camp No. II. was under Mr. W. P. Hales, who had charge of the $\frac{1}{2}$-inch work in Gāngpur and Bonai States in south-eastern sheets of 73B. Mr. Hales surveyed 170 square miles himself besides supervising three to five surveyors.

Camp No. III.—Under the charge of Mr. Dhani Ram Verma, numbered 11 plane-tablers working in the four north-west sheets of 73 F .

Mr. Dalbir Rai was attached to this camp and supervised the work of half a dozen surveyors, besides surveying a small area himself.

Camp No. IV. was under Mr. A. K. Mitra, who had seven men with him. Work lay in the south-western sheets of 73 F and covered the thickest of the Singhbhūm forests.

Reductions of the cadastral maps had been compiled into 1 -inch sineets by the Bengal Drawing Office; and grey prints on drawing paper were supplied for the topographical supplementary survey. The country was too hilly and undulating for the surveyors to get much advantage from the detail on these cadastral reductions. Boundaries, main roads, large rivers and village sites were of undoubted value, but as the ground had all to be gone over for the survey of contours, the rate of survey was not largely increased.

In absolutely flat country these cadastral reductions will be of far greater help; they will show more detail and the trijunction pillars will become im. portant points for the plane-tabler, who also will have no nccessity to cover the whoie ground for the sake of the contouring.

The average monthly outturn for supplementary work comes to about 21 square miles a month, possibly 5 per cent. greater than it would have been without the cadastral sheets. In the most favourable gromed, on the open Rānchi plateau the best surveyors occasionally touched 40 square miles in a month.

Triangulation. -Surveyor Ram Singh triangulated 800 square miles in shects Nos. 64 N and O , and also 600 square miles in sheet No. 72 L , whilst Mr. F. Byrne, completed the area still remaining in sheet No. 72L.

It is to be noted that in this sheet and its neighbourhood the atmosphere is very hazy throughout the cold weather, a circumstance mainly due to the numerous collieries. For all riys over 10 miles long the use of heliotropes is imperative.

An area of 3,180 square miles was completed at a cost rate of Rs. $3 \cdot 1$. The quantity of the work was not good.

The houndaries of a large number of seattered blocks of protected forests in Singhhhum district were traversed by theodolite. The outturn amounted to 253 linear miles with a cost rate of Rs. $6 \cdot 6$.

Recess duties.-During recess the fair mapping was completed under the supervision of the following officers :-

Mr. Dhani Ram Verma; sheets $73 \frac{v}{1,2,5,0}$.

Mr. B. C. Newland ; sheets $73 \frac{\mathrm{~B}}{\mathrm{0}, 10,13,14}$ with the incomplete 1 -inch sheets. $73 \frac{\mathrm{n}}{11 \mathrm{and16}}$ and also the $\frac{1}{2}$-inch sheet $73 \frac{\mathrm{~B}}{\mathrm{E} . \mathrm{E} .}$.
 specially mounted on the plane-tables were brought in without any distortion, and several sheets were fair mapped direct on eulargements of the field sections. 4,188 square miles were fair mapped at a cost rate of Rs. 53. The computations of triangulation have not been entirely completed, and some of the forest boundary traverses still remain.

No. 10 PARTY (UPPER BURMA).

by Major E. T. Rich, R.E.
The field season opened on November the Sth, 1912, and closed on May

Personnel.
Imperial Officers.
Major E. T. Rich, RE., in charge.
Captain E. B. Cardew, R.E. (from 10th May to 26th August 1913).
Lieutedant W. E. Perry, R.E.
Provincial Officers.
Mr. J. Sinith (from 26th May 1913).
Mr. P. Willians (till 22nd October 1912).
Mr. W. G. Jarbo.
Mr. H. B. Simons (from 14th December 1912).
Mr. Y. W. Morton.
Mr. Asmat-Ullah Khan, K.S.
Mr. C. B. Sexton.
Mr. A. F. Murply (from 15th October 1912).
Upper Subordinate Service.
Mr. Hayat Mohammad, K.S. (from 10th May 1913).
Lover Subordinate Sorvice.
34 Surreyore, etc. 18th, 1913, when the party returned to Maymyo. The field head-quarters were at Myitkyinā.

The programme of both detail survey and triangulation was not completed. Mr. Hayat Muhammad, K.S., and two surveyors were deputed to the North Burma Exploration Detachment, two other surveyors were transferred, and one surveyor died. The work of six of the best plane-tablers was thus lost.
The triangulation in the Laukhaung hill tracts was hindered considerably by mist and snow which stopped the work at times for stretches of over ten days.
Mr. Simons who was intended to triangulate a large area in the east of 92C, did not join the party till two months later than was anticipated and then was sick for nearly a month after he joined, so that he really did only half a season's work.

The programme of the party was as follows:-
(a) One-inch detail survey in sheets $92 \frac{\mathrm{D}}{\frac{0}{0,10,13}}, \frac{\mathrm{G}}{2,3,4,6,6,7,8,8,111,12,14,15}, \frac{\mathrm{~K}}{2,8}$.
(b) 2 -inch detail survey of two reserved forests falling in the above sheets with a theodolite traverse of the boundaries.
(c) Triangulation of portions of sheets $92 \frac{\mathrm{~J}}{4,7,8,111,12}, \frac{\mathrm{~K}}{1,2,6,6,0}, \quad, \quad, 8,1 \overline{11}, 22,16,16$, and revision of 800 square miles in sheets $92 \frac{\mathrm{D}}{1,5,6}$.
This programme was completed with the exception of the 1 -inch detail survey in sheets $92 \frac{\mathrm{D}}{\frac{\mathrm{g}, 10,13}{2}, \frac{9}{2,3,8}}$ and triangulation in portions of sineets $92 \frac{5}{8,7,8,1,12}$, $\frac{\mathrm{K}}{\mathrm{B}, \mathrm{B}, 0}$ and $\frac{\mathrm{C}}{7,9,11}$.

The actual areas of detail survey were 2,347 square miles of 1 -inch survey, 125 square miles of 2 -inch forest survey and 24 square miles of 1 -inch reconnaissance in unadministered territory beyond the China frontier; 2,700 square miles of triangulation and traversing were completed which with previous work makcs a total of 5,250 square miles triangulated and traversed in advance. The forest boundary surveys amounted to 207 linear miles of traversing.

Topography. - The party was divided into three detail camps under lieutenant W. E. Perry, R.E., Mr. W. G. Jarbo and Mr. Asmat-Ullah Khan, K.S., respectively, whilst Messrs. Simons, Morton and Sexton were independently employed on triangulation.

Camp No. 1.-Consisted at the commencement of the season of Lieutenant W. E. Perry, R.E., in charge with two officers, Messrs. Sexton and Murphy, and three traversers doing traversing and one surveyor doing planetabling. Later on this camp was broken up. One of the officers, Mr. Sexton, left the camp to do triangulation, the other one, Mr. Murphy, left to do plane-tabling in Camp No, 2, one of the traversers, Khurshed Beg, died, and one surveyor was transferred to Camp No. 3, and Lieutenant Perry himself was transferred to Camp No. 2 for instruction in plane-tabling, leaving only two traversers who were then placed directly under Major Rich.

This camp surveyed 145 square miles on the 1 -inch scale, traversed 44 linear miles and completed 207 linear miles of theodolite boundary survey.

Camp No. 2.-Consisted of Mr. W. G. Jarbo in charge with eight surveyors and apprentices and surveyed 1,474 square miles on the 1 -inch scale.

Camp No. 3.-Consisted of Mr. Asmat-Ullah Khan, K.S., in charge with ten surveyors and apprentices and surveyed 752 square miles on the 1 inch scale and 125 square miles on the 2 -inch scale.

The average outturn per man per mensem of 26 working days was as follows :-

New 1 -inch detail survey 30.2 square miles per mensem.
2 -inch „, $10.1, ~, ~$
These averages are slightly less than last yoar.
Triangulation.-Mr. H. B. Simons triangulated an area of 800 square miles in sheets $92 \frac{\mathrm{c}}{18,15,16}$.

Mr. V. W. Morton triangulated an area of 1,000 square miles in sheets $92 \frac{9}{14.15}, \frac{\mathrm{~K}}{1,2}$ with reconnaissance in sheets $92 \frac{\mathrm{~J}}{\frac{\mathrm{~J}}{2}, \mathrm{~K}}, \frac{\mathrm{~K}}{6}$.

Mr. C. B. Sexton triangulated an area of 900 square miles in sheets $92 \frac{\mathrm{D}}{1,6,0}$.

The same kind of country was triangulated by all three triangulators consisting of thickly wooded hills and deep valleys sparsely inhabited.

To clear hill tops, for making stations, cost in some cases several hundred rupees as the jungle was so thick.

The total outturn of 2,700 square miles was much smaller than calculated owing to Mr. Simons being only able to work for half the season and to the curious climatic conditions in the area worked over by Mr. Morton.

Mr. Morton commenced his reconnaissance in the beginning of November and completed it soon after X'mas. Before he had time to commence observing, the winter rains set in and the higher hills were blocked by snow. It rained practically overy day from the beginning of January till the end of March. As soon as the rains had stopped, heat haze set in completely blocking out all the view. 'The result was that Mr. Morton's area was only about half what it would otherwise have been.
'This year triangulation is being commenced in this tract early in October and it is hoped to complete it early in January before the snow and rains set in.

In each case the instruments used were two vernier 6-inch transit theodolites.

Traversing--'Two officers, and three traversers under the direction of Lieutenant W. E. Pcrry, R.E., in charge of Camp No. 1 were employed during part of the season in surveying 4 -inch boundary traverses round the Maigna, Kawan and Namkwin reserve forests and part of the Zigyun and Talawgyi reserve forests totalling 207 linear miles. In addition 44 linear miles of ordinary
traverse were run inside these reserves to help the plane-tablers. The area covered by these latter traverses is included in the area of triangulation as it is only supplementary work. The instruments used were two vernier $\overline{5}$-inch Everest theodolites.

The country under survey consisted for the most part of mountain ranges from 3,000 to 12,000 feet high, intersected with deep valleys, all covered with dense jungle.

The higher ranges were covered with snow from January to April and when the snow cleared away, heat mists obscured the view, so the work in these higher ranges was carried out under considerable difficulties.

In sheets $92 \frac{f}{4, i, 8}$ bordering on the Irrawaddy the country was low lying and consisted of flat plains and low undulating hills covered with dense jungle which necessitated working almost entirely by plane-table traversing.

The local civil, forest and military police ofticials rendered us every possible assistance.

The health of the party remained good throughout the season except for a few cases of malaria which accounted for the death of one traverser, Khurshed Beg, and two khalasis. Mr. V. W. Morton's camp was struck by lightning on a hill top at the end of March, killing one khalasi and severely injuring two or three others who ultimately recovered.

Recess duties.-The mapping of all the sheets surveyed during the season is well in hand and will all be completed before the party takes the field.

The mapping has been divided into two sections under Lieutenant W. E. Perry, R.E., and Mr. V. W. Morton.

The computations of the triangulation done during the field season have all been completed and rough triangulation charts of sheets 92 D and 92 H with data have been sent to the Superintendent, Eastern Circle.

The traverse computations of all traverses and 4 -inch forest boundary surveys have been completed.
'The new Maymyo drawing office under Captain E. B. Cardew, R.E., and Mr. J. Smith with five draftsmen commenced work in May and has completed the maps for the preliminary issue of the North Burma Exploration Survey as well as the fair drawing of the detail in degree shects $92 \mathrm{E}, \mathrm{F}, \mathrm{I}$, J, of which he hill drawing will be completed during tho winter.

No. 11 PARTY (LOWER BURMA).
 br Captain L. G. Cbostinait, i.a.

With field head-quarters in Tavoy the party started detail survey at the prasonsml. beginning of November 191\% in the north

Inperial Officers.
Captnin L. G. Crosthwait, I.A., in charze. Lieutenant H. I:. Roome, Li.E., from $18 t h$ May 1913.

Irocincial Offecers.
Mr. J. Smith, from 7th December 1912 to 26th May 1913.

Mí. C. Litclifeld, up to 15th May 1913.
Mr. C. S. Littlewood, from loth Aagust 1913 to 27tl: September 1413.

Mr. A. M. Tulati.
Mr, T. P. Dewar.
Mr. H. St. J. Kenny, up to the 31at May 1913.
Mr. A. J. Buotlo.
Mr. R. M. Wyatt.
of the Tavoy district of the Tenasscrim division of Lower Burma and returned to recess quarters at Maymyo towards the end of May 1913. Triangulation was also carried out in the south of the sainc district and extended into the Mergui district.

The country under survey lay between the sea coast and the Siam frontier,

Upper Subordinato Service. Mr. Raghubar Datt Thaplyal.

Lower Subordinate Servioe. 31 Surveyors, etc.
practically the whole of it being densely wooded with hills rising to 6,800 feet. A survey was also made of the North and Middle Moscos Islands which lie from 15 to 20 miles off the coast. The district is one of the most thinly populated of Burma and nearly the whole of the population is gathered along the Tavoy River, for which reason, together with the competition set up by the newly started wolfram and tin mining industry, labour is difficult to obtain. The district is badly provided with communications and there being no pack transport obtainable, Chinese mules were brought down from the Yün-nan frontier of the Northern Shan States. Rice is scarce and large quantities had to be sent out from Tavoy.

The programme of detail survey could not be completed before the rain began, parts of three sheets being left unsurveyed. This was due to the great scarcity of local labour, sickness and to the deputation of two first class surveyors to the missions after the submission of the programme.

The climate with an average rainfall of 230 inches is hot and damp and the party suffered considerably from rheumatism, malarial fever and general ill health brought on by the bites of leeches and other insects which abound in the evergreen jungle.

Topography.-The area surveyed comprising shoets $9 \underset{14,15,16}{\mathrm{~F}}, 95 \frac{\mathrm{~J}}{2,3,4,7,8,16}$ and parts of sheets $95 \frac{\mathrm{~J}}{6,11,12}$ was 1,745 square miles on 1 -inch scale, and 215 square miles of reserved forests on 2 -inch scale, the party being divided up into three camps under Messrs. C. Litchfield, T. P. Dewar and H. St. J. Kenny. For reasons already stated progress was slow.

Triangulation.-Messrs. A. M. Talati and R. M. Wyatt and surveyor Muhammad Yusuf Khan were employed on triangulation and completed sheets 95 K and O , an area of 3,929 square miles. The triangulation was based on the Eastern Frontier series principal triangulation and the secondary triangulation to Bangkok of 1877.

The pillars and mark stones of some of the stations had entirely disappeared, hollows being found in their place. In such cases the triangulator placed fresh mark stones in the centre of the hollow. The country was mostly uninhabited and difficult to get about in.

Tratersing.- A boundary traverse with the theodolite was made of the Pandet-in and part of the Kaleinaung and Heinze reserved forests. The traverse of the latter two reserves was computed in the field.

Recess duties.-The fair mapping was divided into two sections, one under Mr. T. P. Dewar which drow sheets $95 \frac{\mathrm{~F}}{14,16, \frac{10}{2}}, \frac{J}{2,3}$, and the other under Mr. A. J Booth which drew shects $\frac{\mathrm{S}, 7,8,16}{\mathrm{~J}}$.

The scason's triangulation was computed during the recess and fair plots made of the forest boundary traverses.

Cost rates.-The cost rates which are given in Table III are slightly higher than last year for 1 -inch survey, while they are slightly less for triangulation and fair mapping.

The high rates for traversing and 2 -inch survey are due to the density of the jungle in the reserved forests and a large number of surveyors having to be employed for so small an outturn.

Owing to the groat demand for lahour in the Tavoy district the civil
authorities are reluctant to enforce the Goverament rates and the rising of the already exorbitant wages will make future work expensive.

If the outturn and cost of last yoar's $\frac{1}{4}$-inch survey be deducted in computing the inclusive cost rate, that for this year shows a small increase only.

Six Superintendents of the Burma Land Records Department were attached to the party for training in plane-tabling in two batches for two months each.

Applicants for mining concessions are required to submit surveys of the areas they require on scales from four to eight inches to a mile, which are reduced to 1 -inch scale and fitted on to our maps. As these are frequently theodolite traverse surveys made by well trained European and Indian surveyors, a comparison between the large and small scale surveys puts the 1 -inch maps of the party to a severe test for country of this nature. So far they have, on the whole, stood the comparison very well.

A party of Siamese surveyors was carrying out triangulation on the other side of the frontier and some of its stations were on the same hill tops as those of the party.

$$
\text { No. } 12 \text { PARTY (ASSAM). }
$$

By Major A. Mears, I.A.
The operations of the previous season were continued eastward, being

Personnel.

Imperial Officers.
Major A. Mears, I.A., in charge from $24 t h$ October 1912.
Coptain G. F. T. Oakes, R.E., in chatge from 1st to 23 rd October 1912 .

Provincial Offeers.
Mr. W. Skilling.
Mr. Pramadaranjan Ray, Rai Sahib.
Mr. E. M. Kenny.
Mr. Aujad Ali.
Mr. L. Williamo.
Mr. P. C. Mitra.
Mr. J. H. Creed.
Cpper Subordinate Serrice.
Mr. Nanak Chand Puri.
Mr. Sajoni Kumar Ghosal.
Lover Subordinate Service. 41 Surveyors, etc. limited to the north by the Bhutān State and on the south by the Khāsi foot hills comprising standard sheets $78_{0, \overline{0}, \overline{011}} \frac{\mathrm{~N}}{; 3,24,76,16}$ and $83_{1, \overline{2}, \frac{B}{4,4,5,6,7,6 \cdot}}$. The survey was carried out mainly on the 1 -inch scale and consisted partly of original and partly of supplementary survey. The Darranga, Khalingduar, Hājo, Sildar Hill and Singri reserved forests, comprising an area of 37 square miles and situated in the area under survey, were mapped on the 2 -inch scale. In addition the Sonaikuchi and Kolahat reserved forests, surveyed on the 4 -inch scale during season 1904-05 were revised; the large scale survey proved very good except for the hill features which had to be recontoured. A special survey of the Upper Dihing and Jaipur reserved forcsts, district Lakhimpur, was also commenced, the work being much hindered ly bad weather.

The country under survey much resembled that of the previous season, the bills densely wooded and the alluvial plains of Brahmaputra, where not under zultivation, covered with impenetrable "khagra" grass, some 15 to 20 feet high, with scattered trees and clumps of jungle. Field work commenced about the middle of November and closed at the beginning of May when the weather became very unsettled. The health of the party was good on the whole, a slight outbreak of cholera occurred during the last month of the season from which three khalasis died. Four of the party's surveyors were lent to the Forest Officer, Port Blair, for a special forest survey in the Andaman Islands.

Topography.-The detail survey programme was carried out by three camps under the charge of Messrs. Pramadaranjan Ray, Rai Sahib, Amjad Ali, and L. Williams. To Mr. Pramadaranjan Ray, with a strength of nine surveyors, was allotted the survey of $4 \frac{1}{2}$ sheets, Mr. Amjad Ali, with eight surveyors, carried out the survey of $5 \frac{1}{2}$ sheets, and Mr. L. Williams, with seven surveyors, surveyed 4 sheets in all. With the exception of the area surveyed by Mr. Ray's camp and a narrow strip along the Bhutīn boundary, the country was flat. Portions of the Kāmrūp and Darrang districts are well populated and extensively cultivated ; along the foot hills of Bhutān and the Khāsi Hills there are a considerable number of tea gardens. Where not under cultivation, the plains area is covered with high grass jungle and difficult of survey till dry enough to burn. The hills are densely wooded and contain a certain area of sil forest. With the exception of the Gauhāti-Shillong road, an excellent metalled road, indifferent footpaths are the only means of communication in the hills; fair cold weather cart roads exist throughout the whole of the plains. The work was somewhat hindered at the start by an outbreak of cholera in the Rangià Thāna which necessitated a redistribution of plane-tables and the throwing of several surveyors into the same sheet until the epidemic had died out.

Less difficulty was experienced on the whole than in previous years, in obtaining supplies and labour; it was, however, still found necessary to attach a Revenue peon to every three or four surreyors to render assistance in this respect.

A trial was given to Bristol boards and plane-tables mounted with these in place of drawing paper were issued to several surveyors. The idea that projections on boards would be less affected by distortion was not realized, probably owing to the humidity of the atmosphere in A ssam ; as these boards are distinctly awkward to handle and the surface will stand very little erasing no advantage is obtained from their use.

The detail outturn of the party for the season comprised 3,337 square miles on the 1 -inch scale and 43 square miles (includes 6 square miles special forest survey) of reserved forests surveyed on the 2 -inch scale. This for the nature of the country may be considered quite a satisfactory outturn. Although a large proportion of the area was nominally a supplementary survey, its resurreying practically amounted to original work; drainage and village site detail had completely changed owing to the many years that lad elapsed since the Revenue survey. Rivers were found to have shifted their courses in some cases several miles and in others to have altogether disappeared. The main channel of the Bralmaputra River, except where it is confined by hills or rocky formations, has moved considerably southwards, in places as much as 4 to 5 miles.

Tho survey cost rates for the year may be considered most satisfactory being the lowest so far on record in the party. The slightly higher rate for revision surver is accounted for by the smallness of the area and the fact that this survey was done carly in the season when the jungle was exceptionally dense and the outturns consequently small.

The special 2 -inch forest survey cost rate is alnormal ; the work was only started during the last month of the field scason and was interrupted by daily rain.

Triangnlation.-The triangulation was carried out by three Provincial Officers, Messrs. W. Skilling, E. M. Kenny and P. C. Mitra, and was based on the Assam Longitudinal Scries. Connections were made to two bench-
marks of the Gauhäti-Dibrugarl line of levels from which all the heights of the season's triangulation have been deduced. The area triangulated totalled 2,600 square miles falling in standard sheets $83_{12,15,18,}^{\mathrm{B}}, 83_{2, \overline{3.4} \cdot \frac{\mathrm{~b}, 7,8,10,11.12}{}}$ and comprised the foot hills of the Khāsi and Jaintiā Hills and a block known as the Mikir Hills. The latter were triangulated in seasons 1871-72; several of the old stations were found and utilized; the resulting values accorded well. The entire area triangulated was thickly wooded and necessitated very heary clearing for stations, particularly in sheets $83 \frac{\mathrm{~F}}{7,11}$, which mainly consist of reserved forest. Communications are indifferent in the Mikir Hills where coolies are the only possible form of transport. The triangulation cost rate is somewhat above that of previous years due to three Provincial Officers being employed on both field and recess work, one of whom was highly paid; the dense nature of the jungle and the employment of cooly transport also affect the rate.

Traversing.-Supplementary traversing, for the purpose of obtaining heights for the topographical survey of the country, was run in the cadastrally surveyed areas of the Nowgong and Darrang districts. Traversing had also to be resorted to in the plains where impossible to fix sufficient points by triangulation for its detail survey. An attempt was made to traverse the undemarcated boundary between the Darrang districts and the Dafla Hills, but had to be abandoned on account of the denseness of the jungle and lack of communications and villages along the border. This survey will necessitate very complete arrangements for labour and supplies being made beforehand and has therefore been postponed till the coming field season. In all $598 \cdot 5$ linear miles of traversing were run which exclude $43 \cdot 3$ linear miles of forest houndary traverse, 327 selected stations are permanently marked, 566 zine cylinders were also embedded. The country under traverse differed in no respect from that surveyed in detail.

The cost rate for ordinary and boundary traversing is high and is due to a Provincial and an Upper Subordinate officer having been employed on this work, the boundary traversing having been entirely performed by these officers.

Recess duties.-The fair mapping of the season's survey was distributed between three Drawing Sections under the charge of Messrs. P. Ray, Amjad Ali and L. Williams; sheets surveyed by these assistants being as far as possible allotted them to fair map, the two first named having 5 sheets each to draw and Mr. Williams 4 sheets. The progress of the fair mapping has been very satisfactory. Sheets $78 \frac{\mathrm{~N}}{\overline{0,13,14}}$ and $83_{i, 1,7}^{B}$ of the current work have been sulbmitted for publication before the close of the survey year and the remaining sheets $78 \underset{10, i 1,15,18}{\mathrm{~N}}$ and $83 \underset{2,3,0,8}{\mathrm{~B}}$ will be completed before the party takes the field. In addition sheets $78 \frac{1,2,0,0,0}{1,2,0,0}$ and $78 \frac{\mathrm{~N}}{1,2,3,4,4,5,8,7,8,12}$ surveyed in season 1911-12 have been completed and submitted for publication during the year under report; this makes a total of 20 standard sheets for the year.

The cost rate for the fair mapping amounts to Rs. $6^{\prime} 7$ per square mile which is lower than that for the previous year.

The triangulation and traverse computations of the season have been completed, the work proving satisfactory.

TABLE I.
OUTTURNS OF DETAIL SURVEY.

[^2]I
(b) Jncluden 1-inch eurvey nad roriaion.
TABLE II.
details of triangulation and traversing.

table iII.
COST-RATES OF SURVEY.

PART II.-GEODETIC AND SCIENTIFIC OPERATIONS.

ASTRONOMICAL LATITUDES.

No. 13 PARTY.
(Vide Index Map No. 10.)

Pragonnel.

Imperial Officer.
Major H. L. Crosthmait, R.E., in charge up to 28ih February 1913.
Captain V. R. Cotter, I.A., in clarge from 1st March 1913.

Cpper Sulordinate Service.
Mr. Bidhu Bhasan Shome up to 30ih Junc 1913.

Lower Subordinate Service.
1 Compater.

As no officer was available, no Astronomical Latitudes were observed during the field scason 1912-13.

PENDULUM OPERATIONS.

No. 14 Party.
(Tide Index Map No. 10.)
By Captain H. J. Couchman, R.E.
During the season 1912-13, pendulum observations were made at 14 stations situated near the meridian of 78°

Personnel.
Imperial Offico:
Captain H. J. Cuuchmais, R.E.
Provincial Officers.
Mr. Hanaman Presal, up to April 3nth. Mr. O. N. Pushong, fiom May ligth.

Loter Sulordinate Sirrice. 4 Computers. and stretching from Bhopāl to near Bulandshahr. These observations fill in the gap between those of 1906-07 which ended at Gesupur (latitude $28^{\circ} 33^{\prime}$) and those of 1908-09 in the northern portion of the Central Provinces.

The list of stations will be found in Table IV. Witla the exception of Kaliānpur all are situated on flat or undulating country. Near Bhopāl and Guna are scattered hills running up to 300 and 400 feet ahove the station. Kaliannpur is on the western edge of the high ground which runs up though Sipri almost to Gwalior. This is the station of origin of the Indian triangulation, and the pendulums were swung in the room, originally built as an oflice by Sir G. Everest, where Captain Basevi swung his pendulums in 1867.

Thanks to the kiudness of the local oficials good observing rooms were arailable at all the stations, and the control of temperature was casily arranged. The only exception was Bina, where the roof was of loose stone slabs, indifforently weather-proof. Table I. shows the mean temperatures at each station and the hourly changes, and it will be noticed that the mean hourly ohanges were remarkably constant.

TABLE 1.

Station.			Night.		$\mathrm{D}_{\mathrm{A}} \mathrm{f}$.		Mran.	
			Avernge temperiatare C.	llouly chang ${ }^{\text {. }}$	Averng: temperature C .	Hourly change.	Average temperature C.	Hourly change.
			-		\bigcirc		\bigcirc	
Dehrà Dūn	. -	-	18.81	$+0 \cdot 10$	$18 \cdot 57$	$+0.08$	18.69	$+0.09$
Bhopãl	- •	-	$19 \cdot 93$	+0.01	18.83	$+0.21$	19.38	$+0 \cdot 11$
Kaliānpur	- -		$22 \cdot 4.7$	$+0.08$	21.99	+0.02	22.23	$+0.05$
Bina	- -	.	$16 \cdot 53$	- 0.02	15:26	$+0.26$	15.90	$+0.12$
Guna	.	.	18.79	$+0 \cdot 10$	18.16	+0.07	$18 \cdot 48$	$+0.08$
Lalitpur	- -		$17 \cdot 07$	$+0.07$	16.79	$+0 \cdot 12$	16.93	$+0 \cdot 10$
Sipri	- .	.	21%	$+0.06$	$21 \cdot 19$	$+0 \cdot 10$	21-32	$+0.08$
Jhănsi	. .	-	21.85	+0.15	$21 \cdot 87$	$+0.05$	$21 \cdot 96$	$+0 \cdot 10$
G walior	. -		$19 \cdot 50$	$+0.14$	11.59	$+0.09$	$19 \cdot 70$	$+0 \cdot 11$
Dholpur	.		$21 \cdot 0: 3$	$+0 \cdot 17$	21.83	$+0.12$	21.73	$+11 \cdot 15$
Agra		-	$19 \cdot 66$	$+0 \cdot 11$	19:27	$+0 \cdot 10$	$19 \cdot 47$	$+0 \cdot 10$
Muttra	,		20.72	$+0 \cdot 14$	$20 \cdot 90$	$+0.12$	20.76	$+0 \cdot 13$
Häthras		.	20.61	$+0 \cdot 1$	$20 \cdot 36$	$+0 \cdot 13$	$20 \cdot 48$	+0. 0.13
Alignih	. -	,	20.96	+ 10.1:	2170	$+0 \cdot 08$	21.83	$+1310$
Khurja	- •		21.96	+0.07	24.77	$+0 \cdot 12$	24.86	+0.09
Delura Dūn	.	.	24.15	$+0 \cdot 0 \checkmark$	24:21	$+0.13$	$2+18$	$+0.11$

Observations for flexure were as usual made at the beginning and end of work at each station, two sets being taken on each occasion. The greatest difference between the mean before and after work was 1.3×10^{-7} seconds and the station means varied from to to 58 . The actual values are not shown as they call for no comment.

The clock rate was determined ly Mr. LIanumān Prasād. The mean p. e. of a clock rate determined from observations on two successive nights was ± 0.016 seconds and the mean p. C. of the rate derived from observations to one star on two successive nights was ± 0003 scconds. These probable errors are very slightly higher than usual, but the error in time of vibuation due to clock rate is under 1×10^{-7} seconds.
'Table II. shows the times of vibration of the four pendulums at Dehra Dūn in November 1912 and April 1913. The mean time of vibration, 0.5072516 has been adopted for reducing the scason's olservations. This value agrees exactly with that used for the season 1911-12.

TABLIL II.
Tines of Cibration of the four pendulums at Dehra Dün.

	Date.	137	138	139	140	Mead.
	1912.					
$\therefore \mathrm{N}$	11-12	0.5072575	0.5074984	0.5\%71602	$0 \cdot 5070867$	0.5072507
	12-13	2805	4985	1621	0864	2519
	18-14	2596	4976	1606	0864	2509
	14-15	2.590	4999	1616	0883	2529
	Mean	0.5072589	11.0074985	$0 \cdot 6071611$	0.5070969	0.5072514
	1918.					
Apl.	$9-10$	0.5072586	$0 \cdot 5074978$	$0 \cdot 5071585$	0) 5070863	0.5072504
	10-11	2586	5020	1619	0867	2523
	15-16	2593	4992	1618	0872	2519
	16-17	2593	5301	1631	0892	2529
	Mean	0.5072589	0.5074998	0.5071613	$0 \cdot 5070875$	0•5072519
	neral mean	0.5072589	0.51174992	0.5071612	$0 \cdot 5070872$	0.5072516
Diffe	e, April-N	± 0	$+13$	+2	+6	+ ${ }^{\text {b }}$

It ahould be noted that these observations were made in the new pendulum room at Dehre Dūn. This room is about 300 feet due south of, and 12 feet below the old pendulum room in the large photo-heliograph building. Observations made in both moms in A pril 1912 showed that there was no appreciable differmee between them.

In Table III is given the mean time of vibration at each field station, with the value of g deduced therefrom. The value of g at Dehra Dün has, as usual, been taken as 979.063 dynes.

TABLE III.

TABLE IV
SUMMARY OF RESULTS, 1912-13.

The final results of the season's work are shown in 'Table IV. This table has been prepared on different lines this year and requires explanation. The first change to be noted is in the formula for computing γ_{0}, the normal value of gravity at sea-level. Previously we have used Helmert's old formula deduced in 1884, viz.: -
$\gamma_{0}=978.0\left(1+0.005310 \sin ^{2} \phi\right)$, where ϕ is the latitude of the station.
When one formula has been in use for a number of ycars it is always a difficult matter to change, as there must be a break of continuity in the published results. However at the present time a new Professional Paper is about to be published, containing an account of the pendulum observations since 1907 , the date of the last Professional Paper. In this new paper Helmert's later formula, deduced in 1901, is being used for all stations and it will, therefore, be used in this, and all our future records until and unless a better formula is introduced. Helmert's 1901 formula is :-

$$
\gamma_{0}=978 \cdot 030\left(1+0 \cdot 005302 \sin ^{2} \phi-0 \cdot 000007 \sin ^{2} 2 \phi\right) .
$$

The effect of the change of formula is to increase ψ_{0} at all stations by amounts varying, in India, from '029 to 0221.

The next change of procedure is the inethod by which the anomalies $g-\gamma$ are obtained. Formerly the practice has been to correct g, the observed value of gravity at the station, for height and mass and to compare this corrected value, usually called $g_{0}{ }^{\prime \prime}$, with γ_{0}. This practice is certainly rather confusing, as it is difficult to say what $g_{0}^{\prime \prime}$ really represents. In the new Professional Paper, therefore, the theoretical corrections for height and mass are applied to the theoretical value of gravity at sea levol to obtain the theorotical value at the station, which is then compared with the observed value. The values of $g-\gamma$ are, of course, the same whichever procedure is adopted.

Considering next the actual corrections used, that for height is obtained from the formula $\frac{-2 g l_{1}}{\mathrm{R}}$ where $\mathrm{R}=$ radius of earth $=20,900,000$ feet.

The formula for the (Bouguer) mass correction has been slightly changed in this report and in the new Professional Paper. The actual formula is $+\frac{2 \mathrm{~g}}{\mathrm{R}} \times \frac{3 \delta}{4 \Delta}$ where $\delta=$ mean surface density of the earth
$\Delta=$ mean density of the earth as a whole.
Up to the present we have taken $\delta=2 \cdot 8, \Delta=5 \cdot 6$ whence $\frac{\delta}{\Delta}=\frac{1}{2}$ and the formula becomes $\frac{3 \mathrm{gh}}{4 \mathrm{R}}$. Better values of δ and Δ are, however, 2.67 and 5.576 whence $\frac{\delta}{\Delta}=\underset{2009}{1}$ and these values are now heing used, so that the formula for the (Bouguer) mass correction is $+\frac{3 g h}{4 \cdot 18 \mathrm{R}}$.

The (Hayford) mass correction was explained in last yeur's records and is being dealt with at length in the new Professional Paper. It is based on the assumption that all masses above sea level are of density 267 and are compensated by deficiencies of density below sea level, compensation being complete at a depth of 70 miles below that surface. Similarly ocean areas are componsated by excesses of density and the amount of matter in any column standing on a base of unit area and extending from the actual surface of the earth or sea down to a depth of 70 miles below sea level is always the same. Furthermore the whole surface of the earth is taken into account, curvature being amply allowed for.

We now come to the columns in Table IV $\gamma_{\mathrm{A}}, \gamma_{\mathrm{n}}$ and γ_{c}, these suffixes being new. It was necossary to introduce new symbols to replace the g_{0} and
$g^{\prime \prime}$ 。 previously used and also to represent the Eayford, or compensation, method of correcting for mass. The new symbols are self-explanatory.
γ_{Δ} stands for γ_{0} corrected on the free Air hypothesis, i.e., for height only.
γ_{g} stands for γ_{o} corrected on the Bouguer hypothesis, i.e., for height and mass (Bouguer).
γ_{c} stands for γ_{o} corrected on the Compensation hypothesis, i.e., for height and mass (Hayford).

It is advisable to explain thatsalthough the Bouguer correction allows for the effect of surface masses and the Hayford correction for surface masses and their compensation, yet the difference between the two corrections does not represent the effect of compensation. The reason for this is that the Bouguer correction takes no account of the curvature of the earth and consequently the effect of surface masses beyond a certain distance from the station, usually 35 miles, but greater for stations in and near mountainous country, is (rightly on this hypothesis) assumed to be nil. The Hayford correction, on the other hand, makes full allowance for curvature and takes into account the surface masses and compensation of the whole earth, and it can be shown that, although the net effect of the topography and compensation in very distant zones is small, this is merely due to the fact that the two effects are almost equal in magnitude but of opposite sign; the effect of the topography alone or of the compensation alone is large.

For example the Hayford correction for all zones extending from about 1,800 miles from the station to the antipodes varies in India from 0.0013 to 0.0022 but the correction for topography alone in these zones varies from 0.094 to 0.117 at the four stations for which the correction has been computed.

The difference between the two mass corrections is, therefore, due to the effect of the compensation of the topography of the whole earth together with the effert of the topography beyond the "certain distance from the station" given above.

The rest of Table IV requires no explanation except that the column headed g gives the observed value of gravity at the station, assuming that at Dehra Dūn the value is 979.063 dynes.

Dealing now with the residuals in the last three columns of the table, we note first that the Bouguer residuals $g-\gamma_{\mathrm{n}}$ are negative throughout. This is no way unusual for, as will be seen in the new Professional Paper, these residuals are negative at practically every station at which observations have so far been made. The reason of this preponderance of negative values is probably this. The values of $g-\gamma$ on the Bouguer lypothesis have a wellknown tendency to be positive at stations near the coast and negative in and near high ground. The fundamental formula for γ_{0}, which has been deduced from a consideration of the Bouguer residuals, has, it is beiieved, been derived mainly from obserrations at stations on or near the coast and distant from high ground. Consequently at other stations, such as are dealt with this season, the residuals have a natural tendency to be negative. It is probable that if a new formula for γ_{o} were to be derived from Bouguer residuals at all Indian stations the value of the equatorial constant would be about 977.98 instead of $978 \cdot 03$.

However we are really concerned with the relative and not the absolute values of $g-\gamma_{\mathrm{s}}$. The mean residual for the season is 0.031 and if we consider this value indicating normal gravity we see that there are three areas where
gravity is relatively in excess. The first of these comprises the stations Bhopāl to Guna, with a maximum at Kaliānpur, and the results show that this area probably forms part of the belt of high density or " hidden chain."

In 1908-09 observations were made at five stations south of Bhopāl on the meridian of 78° and the residuals at these, varying from -0.013 to -0.026 , show that gravity was relatively in excess at all. The belt of ligh density, therefore, probably extends from south of Amraoti, the most southerly of the five stations referred to above, to Guna and possibly on to Sīprì and Jhānsi.

The residual at Lalitpur, however, shows a local defect in gravity, and as the plumb line deflections have confirmed the evidence of the pendulams by indicating this defect and also the relative excess at Jhānsi and Sipri, and have also suggested a defect between the latter and Guna, it seems probable that if pendulum observations could have been made between Sipri and Guna a relative defect would have been found. The main area of exces-ive gravity, therefore, probably ends just north of the line froin Guna to Bina, and seeing that it extends at least as far south as Amraoti we have, after allowing for the topograpiny, an excess of matter to the south of Kaliānpur which lends strong support to the assumption that the deflection at this, the station of origin of the Indian triangulation, is southerly.

It is also to be noted that in the first seven stations of the Table, omitting Bhopāl, we have three pairs, each station in a pair being nearly on the same latitude as the other. Considering the residuals we see that in each case gravity at the western station is relatively greater than at the eastern. Thus Kaliannpur is greater than Bina by 0.011 , Guna than Lalitpur by 0.018 , and Sipri than Jhānsi by $0 \cdot 008$. This if not a coincidence, seems to show that there is a relative deficiency of mass east of Kalianpur and that the prime vertical deflection there is probably westerly or positive. We cannot, however, be certain of this until observations have been made to the west of Kaliannpur.

The third area where gravity is relatively in excess is that included by the stations Agra to Hāthras and here again the pendulum agrees with the plumbline. North of Hāthras there is a rapid drop to Khurja, with an equally rapid rise to Gesupur (latitude $28^{\circ} 33^{\prime}$, observed at in 1907), where the value of $g-\gamma_{\mathrm{n}}$ is 一0.043. Once again we have other cvidence of this trough of low deusity in the deflections at four stations on the Great arc. These stations are:-

Bostan is close to Gesupur and Chandaos about 9 miles south of Khurja. Between the two stations there is a change in deflection of $4 \frac{1}{2}$ seconds, the plumblinos being defected away from each other, showing that there is probably either an excess of mass north of Bostan or south of Chandaos or a defect of mass betwcen them. If there were an excess of mass we should expect to find either a smaller northerly deflection north of Bostān or a greater northerly
deflection south of Chandaos but as we find neither of these the assumption of a defect between the two stations is the only one that suits the deflections. It may also be noted that the southerly deflection at Noh, some 12 miles north of Muttra, indicates the probability of an excess of mass to the south and this the pendulums have now shown.

We see therefore that the main features of the season's results are in agreement with the evidence of the plumb line, and the chart faoing this page will make this clear.

Turning now to the values of $g-\gamma_{c}$ i.e., the amounts by which gravity is in excess or defect on the assumption that all surface masses are compensated below sea level, we note first that the positive sign predominates. This is gencrally the case with these residuals and may merely mean that our formula for γ_{0} may have to be slightly altered. The differences from station to station are, however, much the same as those of the Bouguer residuals, though it is, as usual, noticeable that at stations in and near high ground the change in residual is greater. Thus at the first six stations, all of which are over 1,100 feet, the incrense varics from 0.043 to 0.048 ; at the next four from 0.034 to 0.036 , and at the remaining stations there is a progressive increase from 0.038 to 0.046 , this being due to the greater proximity of the Himalaya.

Ihe total range of the residuals is nearly the same in both cases, viz., 0.046 for the Bouguer and 0.048 for the Hayford.

In the observations of this season, therefore, no improvement has been effected by the assumption of complete compensation. As has often been pointed out large changes in the residuals are only to be expected near large excesses or defects of mass, i.e, near momentains or seas and at such stations the change in the residuals is always in the right direction, since near mountains Bouguer residuals are negative and uear seas positive.

In last year's report several instances were given of this improvement, but as the values of γ_{0} and of the height and mass corrections at all stations have been recomputed this year it is well to show the results again and to include the new stations at which the corrections have heen computed.

Dealing first with stations in the Himalaya or other mountains we have :--

	Stame			Height.	$g-\gamma_{B}$	$g-\gamma_{C}$	Change.
Samdakphin	.		-	11,766	--0.155	+ 0.48	$+\cdot 203$
Mussomie	,			6,921	-0.123	$+\cdot 05.3$	+ 170
Quetta		.	.	5,520	-0.153	$+\cdot 007$	$+160$
Ootaramuml				7,395	-1) 0.40	+ ${ }^{\circ} 019$	$+\cdot 065$
Yercand	.	.	.	4,4!3	-0.057	-.033	$+\cdot 024$

The changes are very great at all the stations except Yercaud and this can hardly be called a mountain station since the hill on which it stands is not of any great extent. The residuals have, however, been improved in every case and the positive sign of the llayford residuals shows that probably compronation is not quite complete, more especially under the Limailaya.

We next come to stations near the foot of the Himalaya and other moun. tains.

station.			Distance from edge of Lills iu miles.	$g-\gamma_{B}$	$\underline{g--?_{c}}$	Chauge.
Rājpur		.	0	-0.143	+0.026	$+0.169$
Dehra Dūn		-	7	-0.145	+0.006	$+0.151$
Kaliāna	. -	.	60	-0.081	-0.007	$+0.974$
Siligurī	. .	.	8	-0.160	-0.039	$+0.121$
Jalpaigurī	. .	.	28	-0.121	-0.020	$+0 \cdot 101$
Sibi	. -	.	12	-0.139	-0.060	$+0.079$
Jacobābăd	.	.	4.0	$+0.008$	+0.038	$+0.030$
Pathānkot	. -		12	-0.199	- 0.077	+0.122

It will be noticed that the change increases as the hills are approached and that the residuals are reduced in every case except Jacobābād.

The majority of the residuals are negative, although at hill stations they are usually positive. This seems to show that the compensation or partial compensation of the mountains extends beyond them into the plains and we have in these results evidence of the rift, or belt of deficient density, along the foot of the mountains.

It was stated above that at stations near mountains and seas the change in residual due to the assumption of compensation was always in the right direction and we have seen that for mountain stations this is so. With regard to coast stations we have at present only computed the Hayford residuals at two, Madras and Cuttack. Madras, however, seems to be abnormal in that the Bouguer residual there is negative and the assumption of compensation has increased the residual. The figures are :-

	station.			$g-\gamma_{B}$	$g-\gamma_{C}$	Change.

We see that the residuals are either decreased or increased very slightly and as, at the few other coast stations at which observations have been made, the Bouguer residuals are positive they will be improved by the new method of reduction.

During the next ficld season it is proposed to observe at several stations on the Bombay coast and the results to be oltained should throw some light on the question of ocean compensation.

An interesting scries of observations was made in Dehra Dūn in August 1913. Commander Alessio and Signor Abetti, two members of Dr. de Filippi's expedition to the Karakoram, swung their eight pendulums alongside ours, the obscrvations being extended over a period of four days. No night swings
were taken, but it is satisfactory to note that the mean time of vibration of our four pendulums agreed with the mean of the day swings in April 1913 and November 1912, showing that the periodic variation in the clock rate was the same on all three occasions. The results from the Italian pendulums will not be available for more than a year, until the expedition has returned to Genoa, but they will give an independent value of gravity at Dehra Dūn depending, through Genoa, on Potsdam. It is not likely that our present value, 979.063 dynes, is much in error and additional proof of this has lately become arailable in the publication of the observations made in 1906 by Commander Alessio in Colaba, using the same room as that occupied by Major LenorConyngham in 1904. The difference in the value of g obtained by the two observers is only 0.004 , both values being based on Potsdam, ours through Dehra Dūn and Kew and theirs through Genoa. This fresh determination of the actual value at Dehra Dùn should, however, be most valuable.

TRIANGULATION.

No. 15 PARTY.
(Vide Index Maps 9 and 10.)
By Major h. M. Cowie, R.E.
During the cold weather of 1912-13, four detachments of this party were employed, one on principal triangulation,

Prrionnel.

Major H. M. Cowir, R.E., Deputy Suprrintenteut, in charge.
Lieutemant K. Mason, R.E., Assistant Superinteadent, from l6th February 1913.

Provincial Service.
Mr. C. H. Tresham.
„ V. D. B. C.llius.
", V. P. Wainright.
" G. A. Norman.
" B. A. Normau
"C. S. MeIndes.
", Abdul Kariu.
", N. S. Harihara Iyer.
C'per Subordinate Service.
Mr. Jugal Behari Lall.
Lower Subordinate Service.
21 Computers, cte. two on secondary triangulation, and one on trigonometrical operations for the large scale survey of Bombay City and Island.

During the summer months, one detachment, under, first, Lieutenant H. G. Bell, R.E., and later Mr. V. D. B. Collins, was engaged in continuing the series of triangulation in the Hunza Valley and the Tāghdumbāsh Pāmir, connecting the Indian and Russian systems of triangulation. A report of this detachment's work during 1912 was included in the Annual Report of the party for 1911-12. The report now submitted for 1912-13 continues the account of the Pamir operations up to the date of the completion of the Indo-Russian connection in August 1913.

The principal detachment under Mr. C. A. Tresham continued the Sambalpur Meridional Series. This Scries, commenced in 1911-12, springs from the side Bhursu (XLIX) - Harihārpur (L) of the Calcutta Longitudinal Series in a mean Longitude of 85°, near Ranchi, and extends first south-west till it lies astride the meridian of 84° and then south-wards with a view to eventually joining the South-East Coast Series near Parlākimedi. During 1911-12, the series was carried as far as Latitude 22°, from which parallel the operations of 1912-13 have extended the triangulation to a mean latitude of $19^{\circ}-40^{\prime}$, leaving only three figures still to be observed before the connection with the East Coast Series is effected.

Of the secondary detachments, one under Mr. G. A. Norman first completed the junction of the Gäro Hills Series, extending eastwards in Latitude 26° approximately from the Brahmaputra Series, with the Khasi Hills Series which stretches westwards at nearly the same latitude from the Eastern Frontier Series. After finishing observations here, the detachment made a commencement on the Manipur Series which is to connect the Assam Valley Series in the neighbournood of Golaghat with the northern end of the Manipur Meridional Scries, a litile to the east of Manipur.

The other secoudary detachment under Mr. V. D. B. Collins carried the Khandwi Series in Latitude 22°, from tho Great Arc to the Khanpisura Scries, and after completing this work, oommenced selecting and building stations for the Akola Serics, which, running along the meridian of 76^{c}-30', is to connect the Khandwà and Bhir Series.

Ihe 4th detachment furnished by the party completed the triangulation extending over the Island of the Bombay and commencel work on the traverse
network, which in combination with the triangulation, will provide accurately fixed points on which to base the large scale survey about to be undertaken. By the end of the ficld season the positions of 94 points had been determined In the southern and central positions of the island, leaving 24 in the northern part to be fixed during the coming season.

In all districts where detachments of the party worked, the operations were much facilitated by the ready and effective assistance given them by local offioials.

The health of the personnel of the party as a whole was good. In the Sambalpur and Manipur detachments there were, from time to time, several cases of fever, but no outbreaks of sickness or disease occurred to impede the progress of the operations.

Principal Triangulation.

The Sambalpur Series.-At the end of October, Mr. Tresham resumed work on this series at about Latitude 22°, where observations liad been discontinued the previous year, and carried the triangulation southwards through Sambalpur, the Orissa Feudatory States, the Khondmāls and into Ganjām. Between 31st October and 9th March, observations were completed at seventeen stations, astronomical azimuths being determined at two points, Andhari H. S. and Sendur H. S. After the beginning of March, the atmospheric conditions became very unfavourable for the making of precise observations. A thick haze set in, which in combination with the smoke of forest fires, effectually put a stop to the operations after March 25th.

The selection of sites and the building of stations was entrusted to Mr. B. T. Wyatt, Extra Assistant Superintendent, who succeeded in laying out all the stations south of Chirguni Hill Station and Singhijuba Hill Station and in effecting a connection with the East Coast Sories.

The country passed through by the series was inhospitable and ill-adapted for triangulation. Rounded hills covered with thick forest, and the absence of communications, made the triangulator's work of no small difficulty, and it is most satisfactory that so much progress was achieved during the season. The quality of the observations themselves proved, as will be seen in the following statement, to be high.

$$
\begin{aligned}
& \text { Number of principal stations at which observations were completed } 17 \\
& \text { Nomber of secondary stations fixed } 4 \\
& \text { Number of principal stations built and repaired . . . } 17 \\
& \text { Number of secondary stations built } 1 \\
& \text { Progress of series in miles } 167 \\
& \text { A rea covered by figures in square miles 5,014 } \\
& \text { Number of angles observed } 62 \\
& \text { A verage number of measures of each angle } 09 \\
& \text { A verage triangular ertor of } 22 \text { triangles } 0^{\prime \prime} 185 \\
& \text { Maximum triangular error } 0 " \cdot 564 \\
& \text { Average difference from } 360^{\circ} \text { of angles at } 3 \text { central stations . } 0^{\prime \prime} 133 \\
& \text { Average errors of obeervation } 0^{\prime \prime} 37 \\
& \text {," „ graduation 1" } 63 \\
& \text { Value of (Astronomical Azimuth-Geodetic Azimuth) } \\
& \text { at Andhari H. S., Lat. } 21^{\circ} .58^{\prime} \text {, Long. } 4 \mathrm{f}^{\circ}-15^{\prime} \text {. . . } 6^{\prime \prime \cdot} 07 \\
& \text { at Sendar H. S., Lat. } 20^{\circ}-10^{\prime} \text {, Long. } 43^{\circ}-40^{\prime} \text {. . . } \mathbf{9}^{\prime \prime} 18 \\
& \text { Theodolite used T. and S. } 12 \text {-inch }
\end{aligned}
$$

This series effected during the season a connection with the Sambalpur Secondary Series which emanates from the East Coast Series in latitude $\mathbf{2 1}^{\circ}-\mathbf{1 5}^{\prime}$ and extends westwards. The closing differences at the common stations were :-

Secondary Triangulinion.

The Manipur Series and the Gäro-Khäsi Hills Series.-During the field season of 1897-98, a portion of the Eastern Frontier Principal Series was revised for the purpose of ascertaining whether trigonometrical stations in the Gāro and Khāsi Hills had been displaced either vertically or horizontally by the earthquake of June 1897. As there was no certainty that any appreciable changes had taken place, the operations were mainly of the nature of a reconnaissance made with a view to ascertaining the desirability of undertaking, later on, accurate observations which would provide data for the actual measurement of the movements of the carth' crust due to the earthquake.

This revisionary triangulation was based on a side of the principal series about 25 miles south of Shillong. The position of 22 and the heights of 25 old stations were determined, embracing an area of 1,020 square miles. The results of the operations gave indicatious of only relative changes, for all the stations introduced into the scheme were found to lie within the disturbed region. The reconnaissance triangulation showed that large relative displacements had taken place and established the desirability of undertaking a rigorous revision of the principal triangulation. No opportunity however presented itself for the carrying out of the necessary observations with a large instrument; so that when the need arose for triangulation for topographical purposes in the region concerned, it $\mathbf{w} \boldsymbol{s}$ decided to run a good secondary series from the Brabmaputra principal series, assuming this latter to have been unalfected, through the Gäro and Khāsi Hills, to close on the disturbed points of the Eastern Frontier Series. Besides providing topographical data, the Gāro•Khāsi Hills Secondary Series would give further information as to the displacements.

The scondary observations were commenced and completed except at four points during the field season of 1910-11. During the year under report these four points were visited by Mr . Norman and the necessary observations completed. The secondary serics now emanates from the stations of Rangir H. S. of the Brahmaputra Meridional Scries and Sämding H. S. of the Assam Longitudinal Series and closes on Landau Modo H. S. and Mautiderrichian H. S. of the Eastern Frontier Series. The results of the secondary work show a displacement of Landau Modo H. S. by 7 feet to the south and 7 feet to the east combined with an elevation of the station by 8 feet. Mautherrichan U. S. appears to have been moved 13 feet, to the south, 7 feet to the east and to have been raised 21 feet.

After completion of observations on the Gäro-Khãsi Hills Series, Mr. Norman transferred his detachment to Golāghāt to commence work on a
secondary series to connect the Assam Valley Principal with the Manipur Meridional Series.

With the exception of one station, the whole of this connecting triangulation was reconnoitred and laid out, but owing to the thick haze which formed over the hills early in 4 pril, the observations could not be completed.

On the Gäro-Khāsi Hills triangulation an 8 -inch micrometer theodolite was used and on the Manipur work 12 -inch micrometer theodolite No. IV.

The Khandwa Series.-Early in November 1912, a detachment was formed under Mr. V. D. B. Collins, Extra Assistant Superintendent, to execute a secondary series along the parallel of 20° between the Khanpisura Series on the west and the Great Arc on the east. The series, one of twenty-four single triangles, was completed on March 3rd, 1913. After this, Mr. Collins commenced building stations for the Akola Secondary Series which is to run along the meridian of $76^{\circ}-30^{\prime} \mathrm{E}$., between the Khandw $\dot{\bar{a}}$ and Bhir Secondary Series.

The following summary gives the main feature of the Khandwà secondary operations:-

Bombay City Triangulation and Thaverse Oplrations.

During the year under report a detachment under Mr. Wainright continued the work of establishing over the island of Bombay a framowork to serve as a basis for a large scale survey. The main figure of this framework, a pentagon covering the whole of the island and harbour, is based on the side Karanja B. S.--Colāba of the Bombay Secondary Triangulation, an extension from the Bombar Longitudinal Series. From this pentagon emanate minor triangles fixing 60 points and between these latter about 35 miles of precise traverse were run, determining the positions of 25 permanent and 18 semipermanent marks. For both the triangulation and the traverse operations 8 -inch micrometer theodolites were used, readings being taken on five zeros. As the opaque signals used in the previous season had not proved very satisfactory, heliotropes, suitably stopped down, were made use of in the triangulation.

In addition to the network exccuted for the large scale survey, two figures were extended southwards from the pentagon to fix the position of the transit pillar in the Mibagg Observatory.

In the traverso operations, the degree of precision that was aimed at and certain local conditions required the devising of special apparatus and the employment of more rigorous methods than are normal in traverse work.

The permanent marks were placed on brass plugs built into masonry ouc
foot below the level of the ground. On account of the small dimensions of the little pit in which the mark was thus situated, it was impossible to adjust a theodolite or a signal over it by means of a plummet, as the point of the latter, when hanging in the pit, was obscured by the shoulders. Recourse was therefore made to a special device for the centring of instruments and signals which had bean designed previously by Mr. J. de Graaff Hunter, M.A.

This apparatus consisted essentially of a steel rod, pointed at one end and carrying, at the other, a mark or a sightvane, both point and mark or sightvane being placed in the axis of the rod, to which a spirit level was attacherl. The point of the rod was so fashioned as to centre itself automatically in the "d d " " of the mark when the rod was raised into a vertical position. The mounting of the rod was such as to permit of the latter being securely clamped when the spirit level indicated that it had been brought into the true vertical. At the observi:g stations a rod with a mark was usel, the theodolite being contred over the latter, and at the forward and back stations, rods provided with sightvanes were adjusted. The steel rods were provided also with a small device which indicated the points to which the tape measurements should be referred.

As has been said, the angular measures were made with an 8 -inch micrometer theodolite, readings being taken on five zeros.

The linear measurements were made with a 100 feet steel tape. Every day this tape was compared with a standard of length laid down between two brass plates let into the floor of one of the verandalis of the Secretariat building.

During the season, an invar tape of certified length being available, the length of the standard was carefully determined.

The difference between the highest and lowest values of the length of the steel tape during the $2 \frac{1}{2}$ months of its use was 0.007 foot.

During the linear measurements, the temperatare of the tape, as indicated by a thermometer placed in contact therewith and shielded from the sun, was recorded at intervals, and afterwards corrections for temperature were apnlied when computing the linear oistances measured.

The highest and lowest temperatures recorded were 101^{\wedge} and $69^{\circ} \mathrm{F}$. When in use, the tapes were always strained by weights suspended over pulleys so arranged that, while under strain, the tape could be easily brought into the correct alignment. The euds of the successive tape lengths were marked by reference marks which were aligned truly by theodolite.

All the apparatus was found to work satisfactorily, and experience showed that alteration was desirable in one or two respects only, making for lightness, and greater portability.

The adjustment of the traverse net has shown that precision of the work varied a good deal. Where the measurements could proceed expeditiously and uninterruptedly, the accidental errors appear to have been small, while in the case of lines which traversed difficult or traffic congested roads, they are considerably larger. The precision of the lines of the net adjusted to triangulated points varies from $\frac{1}{2,000}$ to ${ }_{80,000}^{1}$, while $\frac{1}{12,000}$ may be taken as generally representing the accidental error generated in lines.

Indo-Russian Triangulation Connection.

During 1912, the whole course to be followed by the series connecting the Indian and Russian systems of triangulation, by way of the Hunza Valley and
the Täghdumbāsh Pāmir, had been reconnoitred, and, except for a distance of some 30 miles, the stations had all been selected and built. Observations, however, had been completed at only a few stations at each end of the series.

During last summer, the operations were continued and brought to a satisfactory conclusion. The completed connection is some 180 miles in length from principal stations just south of Gilgit to the Russian points on the northern edge of the Täghdumbāsh Pāmir. It consists of thirty-three essential and three extra stations embracing twenty-one figures. The maximum altitude at which stations are situated is about 19,000 feet.

The observations were taken with 6 -inch micrometer theodolites, the signals being luminous except in only a few instances when circumstances necessitated the use of an opaque one. Each horizontal angle was measured on six zeros. Owing to the circumstances under which the observations had to be made, no uniformity was possible as regards the time of determining vertical angles. Readings had perforce to be taken when the observers had succeeded in attaining the summit on which the station to be occupied was located and whenever the signals to be observed were visible.

In point of nature of country to be traversed, the series may be divided into two sections, the one comprising the figures extending along the Hunza Valley from Gilgit towa rcls the Kilik Pass, the second those carrying the triangulation across the T'äghdumbāsh Pāmir to the Russian points near the Beyik Pass. In the former, the work was extremely arduous, especially in the 30 miles south of the Kilik Pass, the altitude, coupled with precipitous slopes, snow and inclement weather putting a very severe strain on the powers of endurance of all employed on the work. In the Pāmir Section the difficulties were to some extent reduced by the more easiiy negotiated hills, though here also the weather proved very trying. When, in addition to adverse conditions of this nature, the ever present anxiety as to the sufficiency of food supplies and the sense of always working against time be remembered, it will be recognised that the extension of reliable triangulation through the mountain mass between Kashmir and the Pamir is no insignificant achievement.

The operations during 1913 were entrusted to Licutenant K. Mason, R.E., in charge of the detachwent, and Messrs. V. D. B. Collins and C. S. McInnes, Extra Assistant Superintendents. Arriving on 27th May at Bandipura, the detachment proceeded in two sections to Gilgit viâ the Rāj Diängan and Burzil Passes. A depot was formed at Gilgit and there the detachment was divided into three squads. One of them under Lieutenant Mason marched up the Hunza Valley and over the Mintaka Pass to the Russian stations over the northern edge of the 'laghdumbäsh Pāmir. Commencing the work of observation at these points, the section gradually retraced its steps to the Kilik Pass to connect with the figures laid out from the neighbourhood of Misgar to the Kilik Pass by the second squad under Mr. McInnes.

In the meantime the third squad under Mr. Collins had taken up the extension of the observations from near Hunza, where they had been discontinued in the previous year to Misgar.

By the 25th August, all the observations were completed and a connection effected, through the Hunza Valley Series and the Kashmir Principal Series, between the points of the Russian Survey on the Pämir and the triangulation of the G. T. Surrey.

This year Captain H. G. W. Hingston, I.M.S., was attached to the detachment. This officer made, in addition to hæmatological investigations, what should prove valuable collections of the fauna and flora of the region besides compiling notes on the geology and obtaining rock specimens. The detachment also took observations to indicate what movement had taken place in the snouts of the Minapin and Hasanābād glaciers, the position of which in 1906 had been marked by Mr. H. H. Hayden of the Geological Survey.

Cloud and weather observations were also made daily.

TIDAL OPERATIONS.

No. 16 PARTY.
(Tide Index Map 10.)

Bi Mr. Sted Aulad Hogsfin, K.b.

Personnrl.

Prorincial officers.
Mr. H. G. Shaw, in charge till 28th Febrnary 1913.

Mr. Syed Aulad Hossein, K.B., in charge from 1st March 1913.
Mr. Syed Zille Handain.
Lower Subordinate Service.
1 Clerk.
15 rompaters.
2 Tidal Obsersatory clerks.
2 Artificers.

During the year under report, tidal registrations by self-registering tide-gauges were carried out under the direction of this department, at the ports of Aden, Karāchi, A pollo Bandar (Bombay), Prince's Dock (Bombay), Madras, Kidderpore, Rangoon, Moulmein and Port Blair.
'The immediate control of all the tidal observatories was entrusted to the Port Officers concerned.

It was mentioned in last year's report that tidal diagrams, recorded by a small self-registering river-gauge at Chittagong, were supplied to this party by the Port Officer for the purpose of checking the predicted times and heights of high and low water at Chittagong, but that the readings obtained from those diagrams failed to answer the above purpose. Since then certain improvements have been introduced in the working of the tide-gauge and the preparation of the diagrams, and consequently, the results obtained from the diagrams for the year 1912 have been found sufficiently good to be used as a check on the predictions for Chittagong.

In addition, tide-pole readings of high and low water were taken during day-light at the ports of Bhaunagar and Akyab, with the object of comparing the actual times and heights with the predictions. This work was done under the direct supervision of the port officers who supplied to this party monthly statements of the times and heights read on the tide-poles at their respective ports.

List of Tidal Stations.

The following is a complete list of the ports at which tidal observations have been carried out from the commencement of the tidal operations in 1874 up to the present time. The permanent stations are shown in italics; the others are minor stations which were closed on the completion of the requisite registrations.

$\begin{aligned} & \text { Serial } \\ & \mathbf{N o .} \end{aligned}$	Stations.	$\begin{gathered} \text { Automatlo } \\ \text { or } \\ \text { obsergonal } \\ \text { obervations. } \end{gathered}$	Date of commencemen commencement of observatiolis.	Date of cloning of observations.	Namber of yeare of obserpations.	Brmaics.
8	Navēnar . .	Antomatio	1874	1875	1	Tide-tables not published.
9	Okhe Point . .	Ditto	$\begin{gathered} 1874 \\ \text { Re-started } \\ 1904 \end{gathered}$	1875 1906	$1\} 2$	Year 1904-03 is ex cluded.
10	Porbandar . .	Personal	1893	1894	2	
10A	Porbandar . .	Automatic	1898	1902	2	Years 1898, 1899 and
11	Part Albert Victor (Kāthjāwēr).	Personal	1881	188?	1	
11A	Port Albert Victor (Kāthiēwār).	Automatic	1900	1903	4	
12	Bhaunagar .	Ditto	1889	1894	5	
13	Bombay (Apollo	Ditto	1878	Still working	35	
14	Bombay (Prince's Duck).	Ditto	1888	Ditto	25	
15	Marmagao (Goa)	Ditto	1884	1889	5	
16	Kārwār . .	Ditto	1878	1883	5	
17	Bejpore . -	Ditto	1878	1884	6	
18	Cuchin . .	Ditto	1886	1892	6	
19	Tuticorin .	Ditto	1888	1893	5	
20	Minicoy - .	Ditto	1891	1896	5	
21	Galle . . .	Ditto	1884	1890	6	
22	Colombo	Ditto	1884	1890	6	
23	Trincomulee .	Ditio	1890	1896	6	
24	Peamban Pass . .	Ditto	1878	1882	4	
25	Negapatam . .	Ditto	1881	1888	5	Years 1883 to 1885 are excluded.
26	Madras . .	Ditto	$\begin{gathered} 1880 \\ \text { Re-started } \\ 1895 \end{gathered}$	1890 Still working	$\left.\begin{array}{l} 10 \\ 18 \end{array}\right\} 28$	
27	Cocanãda . .	Ditto	1886	1891	5	
28	Vizagapatam .	Ditto	1879	1885	6	
29	False Point . .	Ditto	1881	1885	4	
30	Dublat (Sāgar Island)	Ditto	1881	1886	5	
31	Diamond Harbour	Ditto	1881	1886	5	
32	Kidderpore . .	Ditto	1881	Still working	32	
33	Chittagong . .	Ditto	1886	1891	5	
34	Akjab . . .	Ditto	1887	1892	5	
35	Dinmond Island	Ditto	1895	1899	5	
36	Baseoin (Burma)	Ditto	1902	1903	2	
37	Elophant Point	Ditto	$\begin{gathered} 1880 \\ \text { Restarled } \\ 1884 \end{gathered}$	1881 1888	\} 5	Year 1850-81 is excluded.
38	Rangoon . .	Ditto	1880	Still working	33	
39	Amherst .	Ditto	1880	1886	6	
40	Morlmein .	Ditto	$\begin{gathered} 1880 \\ \text { Ro-ataited } \\ 1909 \end{gathered}$	1880 Still working	$\left.\begin{array}{l} 6 \\ 4 \end{array}\right\} 10$	
41	Mergui . . .	Ditto	1889	1894	5	
42	Port Blair . .	Ditto	1880	Still working	33	

Working of the Obsertatories.

The tidal observatories at Port Blair, Rangoon, Moulmein and Madras were inspected during the year by Mr. H. G. Shaw and those at Kidderpore, Apollo Bandar (Bombay), Prince's Dock (Bombay), Karāchi and Aden by Mr. Syed Zille Hasuain. Duriug the inspection of each observatory the working zero and the adjustments of the tide-gauge were subjected to a rigorous examimation and the stability of the gauge was tested by check levelling between its bed-plate and the bench-mark of reference. All the instruments were thorougBly orerhauled, cleaned and put in perfect working order.

With the exception of Madras, the registrations of the tides at all the other tidal obserratories have, on the whole, been satisfactory during the past year.

The following need special mention :-
Aden.-The inspecting officer found that nearly 4 inches of mud had accumulated inside the float cylinder. The mud was taken out and all precautions were taken to maintain free communication betweeu the sea and the cylinder.

Prince's Dock (Bombay).-The tidal registrations at this observatory have been frequently interrupted during the year under report, the chief cause being the breakage of the wire to which the recording pencil is attrehed. The interruptions did not, however, exiend beyond a few hours at a time, the longest interruption being of 43 hours duration.

Madras.-The tide-gange at this observatory worked uninterruptedly up to the end of July 1913. There was a break for a week in the tidal registrations early in August, due to the passage between the sea and the tide-gauge well being blocked with sand. The passage was cleared and the communication between the sea and the well was restored, but shortly afterwards the passage was blocked again and the working of the tide-gauge was completely stopped from the forenoon of 10th August 1913. The Chief Engineer of the Port reported that it was practically impossible to restore communication between the sea and the tide-gauge well. It was, therefore, decided to abandon the present observatory and to remove the tide-gauge to another place. With the consent and consultation of the officer in clarge of the Tidal Party, the Chief Engineer has selected a site near the new entrance to the harbour for a new observatory which is now in course of erection. As soon as it is ready, arrangements will be made to install the tide-gauge in it and re-start observations.

Comptatations and Reduction of Obsertations.

All the computations pertaining to the past jear's work have been completed and there are no arrears. The tidal observations at the nine working stations for the year 1912 have been reduced by harmonic analysis, and the ralues for the tidal constants thus determined are shown in the attached tables.

These tables give the amplitudes (R) and the epochs (ζ) at the various stations; they also give the values of H. and K. which are connected with R. and ζ. in such a way, through the various astronomical quantities involved in the position of the sun and the moon, that if the tidal observations were consistent from sear to year, H. and K. would come out the same from eaci year's reductions.

Aden, 1912.
Shorl Period Tides.

Long Period Tides.

| | | |
| ---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |

Kalū̃chi, 1912.

Short Period Tides.

-

Long Period Tides.

Bompay (Apolio Bandar), 1912.
Short Period Tides.

Long Period Tider.

					R	ζ	H	κ
Lunar Monthly	Tide	-	-	-	$\cdot 111$	$339^{\circ}+6$	$\cdot 127$	$296{ }^{\circ} 79$
" Fortnightly	"	.	-	-	-059	2477 ${ }^{\circ}$. 32	. 041	$]^{\text {c. }} 33$
Luni-Solar ,	"	-	-	-	. 016	$229^{\circ} \cdot 25$	$\cdot 017$	$150^{\circ} \cdot 56$
Solar-Annual	"	-	-	-	$\cdot 024$.	$35^{\circ} \cdot 4.6$	$\cdot 024$	$315^{\circ} 05$
1) Semi-Annual	"		-	-	$\cdot 196$	$335^{\circ} 29$	$\cdot 196$	$174{ }^{\circ} \cdot 46$

Bombay (Prince's Dock), 1912.
Short Period Tides.

$$
A_{\circ}=8.300 \text { feet. }
$$

	$\mathrm{M}_{6}\left\{\begin{array}{lr}\mathrm{R}= & \cdot 005 \\ \zeta= & 265^{\circ} \cdot 24 \\ \mathrm{H}= & 006 \\ \kappa=141^{\circ} .31\end{array}\right.$		$T_{2}\left\{\begin{array}{l} \mathrm{R}= \\ \zeta= \\ \mathrm{H}= \end{array}\right.$	$\begin{array}{r} \cdot 115 \\ 334^{\circ} \cdot 29 \\ \cdot 115 \\ 336^{\circ} \cdot 14 \end{array}$
$\begin{aligned} & \mathrm{S}_{4}\left\{\begin{array}{rrr} \mathrm{H}=\mathrm{R}= & 0.020 \\ \kappa=\zeta= & 235^{\circ} \cdot 62 \end{array}\right. \\ & \mathrm{S}_{0}\left\{\begin{array}{rr} \mathrm{H}=\mathrm{R}= & 006 \\ \kappa=\zeta= & 213^{\circ} \cdot 69 \end{array}\right. \end{aligned}$	$\mathrm{M}_{8}\left\{\begin{array}{rrr}\mathrm{R}= & 004 \\ \zeta= & 188^{\circ} 46 \\ \mathrm{H}= & 005 \\ \kappa= & 144^{\circ} \cdot 22\end{array}\right.$	$\mathrm{L}_{2}\left\{\begin{array}{rr} \mathrm{R}= & 0093 \\ \zeta= & 83^{\circ} \cdot 28 \\ \mathrm{H}= & 082 \\ \kappa= & 315^{\circ} \cdot 00 \end{array}\right.$	$(\mathrm{MS})_{ \pm}\left\{\begin{array}{l} \mathrm{R}= \\ \zeta= \\ \mathrm{H}= \\ \kappa= \end{array}\right.$	$\begin{array}{r} \cdot 099 \\ 325^{\circ} 42 \\ \cdot 102 \\ 41^{\circ} \cdot 11 \end{array}$
$S_{9}\left\{\begin{array}{rlr}\mathrm{H}=\mathrm{R} & = & \cdot 002 \\ \kappa=\zeta & = & 356^{2} \cdot 63\end{array}\right.$	$\mathrm{O}_{1}\left\{\begin{array}{rrr} \mathrm{R}= & 781 \\ \zeta= & 156^{\circ} .55 \\ \mathrm{H}= & 667 \\ \kappa= & 45^{\circ .89} \end{array}\right.$	$\mathrm{N}_{2}\left\{\begin{array}{rrr} \mathrm{R}= & .965 \\ \zeta= & 193^{\circ} \cdot 21 \\ \mathrm{H}= & 1.001 \\ \kappa= & 314^{\circ} .58 \end{array}\right.$	$(2 \mathrm{SM})_{2}\left\{\begin{array}{l} \mathrm{R}= \\ \zeta= \\ \mathrm{H}= \\ \kappa= \end{array}\right.$	$\begin{array}{r} .054 \\ 194^{\circ .67} \\ 0.055 \\ 115^{\circ .95} \end{array}$
$M_{1}\left\{\begin{array}{rrr} R= & 098 \\ \zeta= & 161^{2.09} \\ H= & 063 \\ \kappa= & 69^{\circ} .81 \end{array}\right.$	$\mathrm{K}_{1}\left\{\begin{array}{rrr} \mathrm{R}= & 1.553 \\ \zeta= & 218^{\circ} \cdot 3.3 \\ \mathrm{H}= & 1.4 .01 \\ \kappa= & 45^{\circ} .66 \end{array}\right.$	$\lambda_{2}\left\{\begin{array}{cc} \mathrm{R}= & \ldots \\ \zeta= & \cdots \\ \mathrm{H}= & \cdots \\ \kappa= & \cdots \end{array}\right.$	$2 \mathrm{~N}_{2}\left\{\begin{array}{l} \mathrm{R}= \\ \zeta= \\ \mathrm{H}= \\ \kappa= \end{array}\right.$	$\begin{array}{r} \cdot 218 \\ 108^{\circ} 16 \\ \cdot 2.16 \\ 272^{\circ} \cdot 20 \end{array}$
$\mathbf{M}_{2}\left\{\begin{array}{r} \mathrm{R}=\begin{array}{r} 3.930 \\ \zeta= \\ \mathrm{H}= \\ \mathrm{H}= \\ \kappa= \\ \mathrm{K} \end{array} 3^{\circ} .131^{\circ} .873 \end{array}\right.$	$\mathrm{K}_{2}\left\{\begin{array}{rrr}\mathrm{R}= & \cdot 513 \\ \zeta= & 162^{\circ} \cdot 57 \\ \mathrm{H}= & 393 \\ \kappa= & 356^{\circ} \cdot 96\end{array}\right.$	$v_{2}\left\{\begin{array}{lr} R= & 153 \\ \zeta= & 254^{\circ} 55 \\ \mathrm{H}= & 159 \\ \kappa= & 9^{\circ} \cdot 90 \end{array}\right.$	$\left(\mathrm { M } _ { 2 } \mathrm { N } _ { 4 } \left\{\begin{array}{l} \mathrm{R}= \\ \zeta= \\ \mathrm{H}= \\ \kappa= \end{array}\right.\right.$	$\begin{array}{r} 019 \\ 190^{\circ} \cdot 76 \\ \cdot 021 \\ 30^{0.81} \end{array}$
$M_{3}\left\{\begin{array}{rr} \mathrm{R}= & 085 \\ \zeta= & 100^{\circ} .66 \\ \mathrm{H}= & 090 \\ \kappa= & 38^{\circ} .70 \end{array}\right.$	$\mathrm{P}_{1}\left\{\begin{array}{rrr}\mathbf{R}= & 409 \\ \zeta= & 233^{\circ} \cdot 04 \\ \mathrm{H}= & 409 \\ \kappa= & 43^{\circ} \cdot 45\end{array}\right.$	$\mu_{2}\left\{\begin{array}{rr} R= & \cdot 212 \\ \zeta=151^{\circ} \cdot 05 \\ H=1228 \\ \kappa=308^{\circ} .43 \end{array}\right.$	$\left(\mathrm{M}_{2} \mathrm{~K}_{1}\right)_{3}\left\{\begin{array}{l} \mathrm{R}= \\ \zeta= \\ \mathrm{H}= \\ \kappa= \end{array}\right.$	$\begin{array}{r} .098 \\ 207^{\circ} \cdot 26 \\ .036 \\ 113^{\circ} \cdot 28 \end{array}$
$\mathrm{M}_{4}\left\{\begin{array}{lr} \mathrm{R}= & .079 \\ \zeta=171^{2} .84 \\ \mathrm{H}= & 085 \\ \kappa=1329^{\circ} .22 \end{array}\right.$	$\mathrm{J}_{1}\left\{\begin{array}{rrr} \mathrm{R}= & \cdot 136 \\ \zeta= & 290^{\circ} \cdot 99 \\ \mathrm{H}= & \cdot 117 \\ \kappa= & 64^{\circ} .65 \end{array}\right.$	$\mathrm{R}_{8}\left\{\begin{array}{cc} \mathrm{R}= & \cdots \\ \zeta= & \cdots \\ \mathrm{H}= & \cdots \\ \kappa= & \cdots \end{array}\right.$	$\left(2 \mathrm{M}_{2} \mathrm{~K}_{1}\right)_{3}\left\{\begin{array}{l} \mathrm{R}= \\ \zeta= \\ \mathrm{H}= \\ \kappa= \end{array}\right.$	$\begin{array}{r} \cdot 06 \% \\ 95^{\circ} \cdot 26 \\ .060 \\ 65^{\circ} .31 \end{array}$

Long Period Tides.

				R	ζ	H	κ
Lunar Monthly	Tide	,	-	$\cdot 121$	$336^{\circ} \cdot 11$	-188	$283^{\circ} .43$
" Fortnightly	"	-	-	. 059	$25 t^{0.33}$	$\cdot 041$	$8^{\circ} .33$
Luni-Solar ,	"	-	-	$\cdot 014$	208 ${ }^{\circ} 79$	$\cdot 015$	$130^{\circ} \cdot 10$
Solar-Annual	"	-	.	$\cdot 044$	$38^{\circ} 12$	$\cdot 0 \pm 4$	$317^{0.70}$
" Semi-Annual	"	-	-	$\cdot 196$	$337^{\circ} \cdot 52$	$\cdot 195$	$176{ }^{3} \cdot \mathrm{AK}$

Mapras, 1912:
Short Period Tides.

Long Period T'ides.

Kidderpore, 1912.
Short Period Tides.

Long Period Iides.

| | | | |
| ---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |

Rangoon, 1912.

Short Period Tides.

Long Period Tides.

				R	ζ	H	κ
Lunar Monthly	Tide	-	-	$\cdot 214$	$45^{\text {c }} 38$	-244	1. ${ }^{\circ} 46$
" Fortnightly	'	.	-	$\cdot 108$	$275{ }^{\text {c }} 70$.075	$28^{\circ} 00$
Luni-Solar ,	"	-	-	$\cdot 432$	$121^{\circ} \cdot 29$	$\cdot 448$	$41^{\circ} \cdot 08$
Solar-Annual	"	-	-	$1 \cdot 339$	$233^{\circ} \cdot 46$	1.339	$152^{\circ} \cdot 07$
"Semi-Annual	"	-	-	$\cdot 116$	$125^{\circ} 45$	$\cdot 116$	$3240 \cdot 49$

Moulmein, 1912.
Short Period Tides.

Long Period Tides.

				R	ζ	H	κ
Lunar Monthly	Tide	-	-	$\cdot 436$	$51^{\circ} \cdot 17$	-497	$7^{\circ} 59$
, Fortnightly	"	-	-	$\cdot 334$	$283^{\circ} \cdot 49$	-233	$35^{5} \cdot 68$
Luni-Solar ,	"	.	-	1•194	$122^{\circ} \cdot 49$	1'237	$42^{\text {c }} 12$
Solar-Annual	"	-	-	$2 \cdot 233$	$227^{\circ} \cdot 69$	$2 \cdot 233$	$1+7^{\circ} \cdot 20$
, Semi-Annual	"	-	-	$\cdot 5.46$	$92^{\circ} .83$	$\cdot 546$	2810.86

Port Blail, 1912

Short l'eriod Tides.
$A_{u}=4.828$ feet.

Long Period Tides.

				R	ζ	H	κ
Lunar Monthly	Tide		.	$\cdot 0.38$	390.54	043	$356^{\circ} 14$
" Fortnightly	"	-	.	$\cdot(103$	$273^{\circ} 47$	$\cdot 044$	$26^{\circ} 02$
Lani-Solar ,	"	-	-	-002	${ }^{1} 104^{\circ} .55$.002	24.51
Solar-Annual	"	-	.	-291	$24.3{ }^{\text {o }} 03$	291	1620.55
" Semi-Annual	"	.		$\cdot 173$	325 ${ }^{\circ}$. 3.3	$\cdot 113$	$164{ }^{0 \cdot 39}$

Data forwarded to England.

The following data were prepared and supplied to the Director of the National Physical Laboratory, Teddington, England during the year under report:-
(a) Values of the tidal constants for forty ports for the tide-tables for 1916, ready for use for the tide predicting machine.
(b) Actual values during 1911 of every high and low water measured in duplicate from the tidal diagrams at nine stations and of the tidepole observations taken during day-light at two stations.

- (c) Comparisons of the above with predicted values for 1911, the errors being tabulated in such form as to be of use in improving the predictions.

Errors in Predictions.

The percentage and the amount of errors in the predicted times and heights of high and low water for the year 1912, as given in the tide tables, have been determined by comparison with the actual values obtained from tidal registrations at the nine stations now working. Similar information has also been compiled for three stations at which regular tidal registrations have been stopped, but the actual values of high and low water were obtained from tide-pole readings in the case of two stations (Bhaunagar and Akyab) and from tidal registrations of a suall river gauge in the case of the third station (Chittagong).

The errors are tabulated in the five tables herewith appended.

No. 1.

Statement showing the percentage and the amount of the errors in the predicted times of high water, at the various tidal stations for the year 1912.

Stationg.	$\begin{gathered} \text { Aulomatic } \\ \text { or } \\ \text { obsercole } \\ \text { obryations. } \end{gathered}$	Number of comparisons between actunl and predleted values.	Errors of 5 minutes and under.	Errors over 6 minutes and onder 15 minutes.	Errors over 15 minutes nad under 20 minates.	Errors over 20 minutes and under 30 minutes 30 minutes.	Efrors over 30 mlautes.
			Per cent.				
Aden . . .	Auto.	679	43	46	6	4	2
Karēchi . .	Auto.	707	25	36	13	14	12
Bhaunagar .	T. P.	366	68	32	0	0	0
Bumbey $\left\{\begin{array}{l}\text { A pollo Banlar }\end{array}\right.$	Auto.	707	44	40	7	6	3
Bumbay \{ Prince's Dock	Aulo.	692	39	46	9	3	3
Madras . .	Auto.	705	39	48	7	5	1
Kidderpore	Auto.	706	27	47	10	11	5
Cbiltagong* .	Auto.	672	23	35	12	14	16
Akyab . . .	T. P.	362	97	2	1	0	0
Rangoon . .	Auto.	706	47	32	9	6	8
Mculmein . . .	Auto.	684	26	44	13	13	4
Fort Blair . .	Auto.	706	40	45	7	6	2

- Obserrations taken with a amall river gauge by the Port Omeer.

Na. 2.

Statement showing the percentage and the amonnt of the errors in the predicted times of low water at the various tidal stations for the year 1912.

Bratione.	$\begin{gathered} \text { Automatic } \\ \text { or } \\ \text { tide-pole } \\ \text { observations. } \end{gathered}$	Number of comparisons between actnal aud predicted valuea.	Errore of 6 minates and onder.	Errors over 8 minates and under 15 minder.	Errors orer 15 minntes and onder 20 minutes.	Errors over 20 minules and under 30 minates.	Errors over 30 minutes.
			Per cent.	Per cent.	Per cent.	Per cent.	Per oont.
Aden . . .	Auto.	676	39	44	7	7	3
Kвгāchi . . .	Auto.	708	27	35	11	14	13
Bhauniyar . . .	T. P.	366	64	36	0	0	0
(A pollo Bandar	Auto.	708	39	45	7	6	3
Bumbay \{ Prince's Dock	Auto.	692	39	42	11	6	2
Madras	Auto.	703	46	44	6	3	1
Kidderpore . . .	Auto.	747	30	38	12	12	8
Chittagong* .	Auto.	668	19	31	12	17	21
Alyab . . .	T. P.	363	98	2	0	0	0
Rangoon . .	Anto.	715	27	44	13	13	3
Moulmein . .	Auto.	684	18	26	9	20	27
Port Blair . . ,	Auto.	707	49	41	5	3	2

* Oligerfatiune taken with a emall rivor gange by the Port Officer.

No. 3.

Statement showing the percentage and the amount of the errors in the predicted
heights of high water at the various tidal stations for the year 1912.

etatione.	Automatic or tide-pole obecrvations,	Number of comparisune betreen uctual and predicted values.	Mean range at oprings in feet. fet	$\begin{aligned} & \text { Errors of } \\ & \text { binches and } \\ & \text { under. } \end{aligned}$	Errurs over 4 inclies and under 8 Inclies.	Errors over 8 inches and nuder 12 inches.	$\begin{gathered} \text { Errors } \\ \text { over } \\ 12 \text { inches. } \end{gathered}$
				Per cent.	Per cent.	Per cent.	Per cent.
Alien	Auto.	679	6.7	95	5	0	0
Mañohi . . .	Auto.	707	$0 \cdot 3$	68	28	4	0
Bhaunagar	T. P.	866	31-b	64	30	5	1
Bumbaf $\begin{aligned} & \text { A pollo Bandar . }\end{aligned}$	Auto.	707	18.9	68	25	6	1
(Prince's Dock .	Auto.	692	$13 \cdot 9$	66	87	©	1
Madras	Auto.	705	3•5	85	14	1	0
Kidderpore	Anto.	7106	117	43	27	16	14
Chittagong*	Auto.	672	$13 \cdot 3$	46	30	15	9
Alyab .	'T. P.	302	$8 \cdot 3$	88	11	1	0
Rangoon	Auto.	706	16.4	49	33	13	5
Moulmein	Auto.	684	$12 \cdot 7$	38	28	16	18
Port Blair	Autu.	706	6.6	88	12	0	0

[^3]No. 4.
Statement showing the percentage and the amount of the errors in the predicted heights of low woater at the various tidal stations for the year 1912.

Smiliong.	Automatic or tide-pulo observations.	Nntrber of comperiaons betweel heluni and predioted vulues.	Mean nage at springs in feet.	Etrors of 4 inches and noder.	$\begin{aligned} & \text { Errors } \\ & \text { over } 4 \text { inches } \\ & \text { and under } \\ & \text { 8 incheb. } \end{aligned}$	$\begin{gathered} \text { Errors } \\ \text { over } 8 \text { inches } \\ \text { and under } \\ 12 \text { inches. } \end{gathered}$	$\begin{gathered} \text { Errorg } \\ \text { over } \\ 12 \text { lnobee. } \end{gathered}$
				Per cent.	Per cent.	Per cent.	Per cent.
Adeu .	Auto.	676	6.7	97	3	0	0
Karêchi	Auto.	708	$9 \cdot 3$	81	17	2	0
Bhaunagar .	T. P.	366	31.4	61	33	5	1
Apollo Bandar.	Auto.	708	$13 \cdot 9$	66	29	4	1
Bombay $\{$ Prince's Dock.	Aulo.	692	$13 \cdot 9$	68	26	5	1
Madras	Auto.	703	$3 \cdot 5$	90	9	1	0
Kidderpore	Anto.	707	11.7	44	27	17	12
Cbittagone* .	Aato.	668	13.3	36	28	18	18
Abyab . .	'I. P.	363	$8 \cdot 3$	92	8	0	0
Rangoon	Auto.	705	16.4	30	26	24	20
Moulnein	Auto.	684	12\%	31	26	20	23
Port Blair	Auto.	707	6.6	94	6	0	0

- Obecryallons taken with a small river gauge by the Port Offeer.

No. 5.

Table of average errors in the predicted times and heights of high and low water at the several tidal stations for the year 1912.

bitalions.	Aulomatic or tide-pole observations,	Mean range at springs infeet.	atrbage Emiobs					
			$\begin{gathered} \text { Of time } \\ \text { in mivutes. } \end{gathered}$		Ot beight in terms of the range.		Of height in inches.	
Open Codst.			H. W.	L. W;	H. W.	L. W.	H. W.	L. W.
Aden	Auto.	6%	8		. 025	. 026	2	2
Karācbi :	Auto.	. 93	10	15	-036	- 027	4	3
Bhaunagar	'T. P.	31* 4	15	$\overline{0}$	-011	-011	4	4
- Apollo Bandar	Anto.	13.9	9	\mathcal{Y}^{\prime}	. 024	. 024	4	4
Bombey $\left\{\begin{array}{l}\text { [rince's Duck }\end{array}\right.$	Anto.	13.9	9	10_{i}^{i}	$\cdot 024$. 024	4	4
Madras . .	Auto.	3.5	9	8	071	. 048	3	y
Akyab . .	'r, P.	8:3	1	0	. 020	$\cdot 020$	2	2
Port Blair	Auto.	6%	0	7	$\cdot 025$. 025	2	2.
General Mean	\cdots	...	8	8	$\cdot 030$	-026	3	3
Kidderpore	Auto.	11.7	J2	1.6	-050	.043	7	6
Chitlageng* .	duto.	$13 \cdot 3$	14	2'	$\cdot 038$. 050	6	8
Hangoon .	Auto.	16.4	10	12	-025	.041	5	8
Moulmein	tuto.	12.7	12	21	1046	. 0.59	7	9
General Mean	; ...	\ldots	1:1	17°	-04"	. 048	6	8

[^4]The foregoing statements for the year 1912 may be thus summarised :-
Percentage of time predictions within 15 minutes of actuals.

Percentage of height predictions within 8 inches of actuals.

Percentage of height predictions within one-tenth of mean range at springs.

Comparison of the Predictions for 1912 with those for the Previous fear.

The predictions for the year 1912 at the nine stations now working, as well as at two other stations where tidal observations were taken by the Port Officers on tide poles were compared with the corresponding predictions for 1911, and it was found that at all the open coast stations the predictions for 1912 were practically as good as in the previous ycar, except at Karīchi, where they were distinctly worse both for times and heights of high and low water.

For the riverain ports the results are as follows:-
At Kidderpore the predictions were slightly better.
At Rangoon and Moulnein the predictions were about the same for heights but better for times.

The greatest difference between the actual and predicted heights of low water for 1912 at the riverain ports was as follows :-

Kidderpore . $2^{\prime} 8^{\prime \prime}$ on 1st November 1912, actuals being higher.
Rangoon . . $2^{\prime} 4^{\prime \prime}$ on 1st October 1912, actuals being lower.
Moulmein . $2^{\prime} 5^{\prime \prime}$ on 2tth August and 24th September 1912, actuals being lower.

Tide-tables.
The tide-tables for the year 1914 have been received from England and distributed to the various officers concerned. The tide-tables for the year 1915 are now being published in England and the data for the preparation of the tide-tables for 1916 were despatched to England in February 1913.

The amount realized on the sale of the tide-tables during the year ending September 1913 is Rs. 2,127-14-3.

Programie for Season 1913-14.
Tidal observations during the coming year will be continued at the nine observatories now working.

LEVELLIN G.

No. 17 PARTY.
(Vide Index Map 10:)
By Mr. H. G. Bhaw.
There were three detachments engaged on levelling operations. The strength of these detachments was as detailed below :-

Psrsonntr.
Imporial Officers.
Captrin V. R. Cotter, I.A., in charge up to 28th Febraary 1913.
Lieutenant A. A. Cbase, R.E. (Nepāl Boundary Detachment).

Provincial Officers.

Mr. H. G. Shaw, in charge from 1st March 1913.
Mr. O. N. Pushong, up to 14th May.
Mr. D. H. Lura,
Mr. T. F. Kitchen.
Mr. F. W. Smith.
Mr. O. D. Jackson.
Mr. Jiya Lal.
Mr. Narendra Nath Chuckerbutty.
Upper Subordinate Officers.
Mr. Ham Singb, Rai Sahib (Nepäl By. Dett.)
Mr. Kuruna Kumar Das.
Lower Subordinate Establishment.
3 Computera (2 Computers, Nepāl By. Dett.)
9 Recorders.
2 Clerks.

No. 1 Detachment.
Mr. D. H. Luxa, lst Leveller, up to 23rd April 1913.

Mr. Jiya Lal, 2nd Leveller, up to 23rd after which date as lst Leveller.

Mr. Karana Kumar Das, 2nd Leveller, from 24th April 1813.

3 Recorders.

No. 2 Detachment.

Mr. T. F. Kitchen, 1st Leveller.
Mr. F. W. Smith, 2nd Leveller, from 25th November 1912.

Mr. N. N. Chuckerbutty, 2nd Leveller, up to 24th November 1912.

3 Recorders.

No. 3 Detachment.

Mr. O. D. Jackson, 1st Leveller.
Mr. N. N. Chuckerbutty, 2nd Leveller, from 13th December 1912.
Mr. Karuna Kumar Das, 2nd Leveller, up to 12th December 1918.
3 Recorders.

Programme of work during the field season.

No. 1 Detachment.

This detachment was employed on the following lines of levels:-
(1) The completion of the line Sargodha to Multann by road.
(2) Revisionary levelling from Multān to Māhīwālā T. S. partly by road and partly along the railway line.
(3) Revisionary levelling between Ambãla, Meerut, and Delhi, along the main road.
(4) Levelling from Delhi along the road to Muttra.
(5) Levelling from Murree along the tonga road to Srinagar (Kashmir), with branch lines emanating from Srinagar (a) to Pahlgam via Islāmābād, (b) to the Sind Valley, (c) towards Bandapur, (d). towards Shupiyān.
Those branch lines were carried out at the request of the Kashmir Durbar.
Line Sargodha to Multän.-The line Sargodha to Multän closes the circuits (a) Multān, Khemwālā, Segra, Daryākhān, Khushāb, Sargodha, Multān, and (b) Multān, Sargodha, Lahore, Ferozepore, Murghai, Khemwālā, Multān.

The closing errors being 0.095 and 0.190 of a foot respectively, as shown in the following tables:-

Lines.	$\begin{gathered} \text { Distance } \\ \text { in } \\ \text { miles. } \end{gathered}$	Unadjusted difference of orthometric Leights in feet.	Ybar.
Circuit A. Frum Standard Bench-mark at Multãn (antonment to ground level mark- 			
	$38 \cdot 2$	$+5 \cdot 477$	$\begin{gathered} 1907-08 \\ \text { and } \\ 1866-67 \end{gathered}$
From ground level mark-stone of Khemwālā G. T. Survey Tower Station $\}$ to ground level mark-stone of Segra G. T. Survey Tower Station.	120.9	+195.991	1859-60
From grouud level mark-stone of Segra) G. T. Survey Tower Station to G. T. S. O at Daryāklāa railway station. B. M.	2.7	-17.707	1906-07
$\left.\begin{array}{c} \text { G. T. S. } \\ \text { From } \begin{array}{c} \text { O. } \\ \text { B. M. } \end{array} \\ \text { staryākhān railway } \\ \text { station to } \left.\begin{array}{c} \text { G. T. S. } \\ \\ \\ \\ \text { B. M. } \end{array}\right\} \text { way station. } \end{array}\right\}$	$85 \cdot 5$	$+27 \cdot 129$	1910-11
$\left.\begin{array}{c} \text { G. T. S. } \\ \text { From } \begin{array}{c} \text { O } \\ \text { B. M. } \end{array} \text { at Kushāh railway sta- } \\ \text { G. T. S. } \\ \text { tion to } \left.\begin{array}{l} \text { Q. M. } \end{array}\right\}, \text { at Sargodha. } \\ \text { B. M. } \end{array}\right\}$	$29 \cdot 5$	+0.015	1911 -12
$\left.\begin{array}{c} \text { G. T. S. } \\ \text { From } \\ \text { B. M. } \\ \text { Bench-mark at Multān Cantonment. } \end{array}\right\}$	$173 \cdot 5$	-211.000	$\begin{gathered} \text { 1911-12 } \\ \text { and } \\ 1912-13 \end{gathered}$
	$450 \cdot 3$	-0.095	
Circuit B.			
$\begin{gathered} \text { From Standard Bench-mark at Multān } \\ \text { G. T. S. } \\ \text { Cantonment to } \\ \text { B. M. } \end{gathered}$	$173 \cdot 5$	+211.000	$\begin{gathered} \text { 1911-12 } \\ \text { and } \\ 1912-13 \end{gathered}$
$\left.\begin{array}{c} \text { G. T. S. } \\ \text { From. } \\ \text { B. M. } \\ \text { Bench-mark at Lahore Cantonment. } \end{array}\right\}$	116.0	+94.254	1911-12
From Standard Bench-mark at Lahore Cantonment to G. T. S. Bench-mark at Ferozepore.	$54 \cdot 6$	-63.792	1906-07
$\left.\begin{array}{c}\text { From G. T. S. Bench-mark at Feroze- } \\ \text { pore to Murgbai Bench-mark. }\end{array}\right\}$	312.0	-351.737	1860-61
From Murghai Bench-mark to ground $\left.\begin{array}{l}\text { level mark-stone of Khemwālā G. T. } \\ \text { Survey Tower Station. }\end{array}\right\}$	$100 \cdot 0$	-115.942	1859-60
$\begin{aligned} & \text { From ground level mark-stone of Khem- } \\ & \text { wāā G. T. Survey Tower Station to } \\ & \text { Standard Bench-mark at Multān Can- } \\ & \text { tonment. } \end{aligned}$	38.5	-5.477	$\begin{gathered} \text { 1866-67 } \\ \text { and } \\ 1907-08 \end{gathered}$
	$784 \cdot 6$	$+0.190$	

The circuit errors shown in the above have been deduced from unadjusted orthometric differences of height.

The line Delhi to Muttra. .- The levelling from Delhi to Muttra completes the circuit Delhi, Meerut, Hathras, Muttra, Delhi, the closing error being 0.158 of a foot as shown below. This error has been deduced from unadjusted differences of orthomeiric heights.

Linos.	$\begin{gathered} \text { Distnace } \\ \text { in } \\ \text { miles. } \end{gathered}$	Unudjusted difference of orthometric height: in fect.	Year.
$\left.\begin{array}{l} \text { From + at St. John's Church, Meerut } \\ \text { to Hāthras G. T. S. Block-stone } \\ \text { Bench-mark. } \end{array}\right\}$	$102 \cdot 5$	$-15.3 .222$	1861-62
$\left.\begin{array}{l}\text { From Hāthras G. T. S. Block-stone } \\ \text { Bench-mark to Standard Bench-mark } \\ \text { at Muttra. }\end{array}\right\}$	$27 \cdot 5$	--25:314	1905-06
$\left.\begin{array}{l} \text { From Standard Bench-mark at Muttra } \\ \text { to Standard Bench-mark at Delhi. } \end{array}\right\}$	96.0	+197.819	1912-13
$\left.\begin{array}{l} \text { From Standard Bench-mark at Delhi } \\ \text { to }+ \text { at St. John's Cburch, Meerut. } \end{array}\right\}$	$45 \cdot 6$	-19 1925	1912-73
	271.5	$+11.158$	

Revision of line Multän to Mähīwālà T. S.-On the revision of the line Multān to Māhīwàlā T. S., a distance of 42 miles, only one old bench-mark near Muzaffargarh, about 18 miles from Multān, was found in existence, the rest of the old bench-marks had no inscriptions and were mostly on the tops of parapets of bridges and culverts, which have since been renewed, and hence no comparisons can be made between the old and new values.

The results of this revisionary levelling showed that the bench-mark near Muzaffargarh had remained intact, but at Māhīwālā T. S., a difference of 0•166 of a foot was found between the old and new values; this was probably due to the mark-stone at this station having been tampered with as it was found broken in two pieces.

Revision of line Ambäla to Dellii.-The revision of the old lines of levels from Ambāla, viá Jagādhri, Sahāranpur to Meerut of season 1861-62, and from Meerut to Delhi of season 1866-67, showed that there was a discrepancy of about 0.7 of a foot, between the old and new values of height of the benchmark 901.6 个 inscribed on the upper stone step just outside the wooden sill of the western doorway of the tower of St. Paul's Church at Ambäla. Accepting the old height of this bench-mark as correct, we find that all the old embedded bench-marks along the above route to Delhi, with the exception of the one at Khatauli, show a rise varying from 0.5 to 0.8 of a foot. This would lead one to suspect that the Ambāla Chureh bench-mark had settled about 8 inches, which is extremely improbable, for if such a large settlement had taken place in this bench-mark, the Church Tower, on the plinth of which this bench-mark is situated, would certainly have showed signs of cracks or separation from the main building, which is not the case.

There is no doubt about the point of reference being identical with that of 1861-62. The only way at present to account for this difference is, that perhaps a gross error has been made between Ambāla and Jagādhri, either in
the old or in the revised levelling. It is intended to relevel the line between Ambāla and Jagädhri next field season.

The embedded beuch-mark at Khatauli shows a settlement of 0.14 of a foot as compared with Ambala, or of nearly 10 inches with reference to the other bencl-marks of this revision work.

No. 2 Detachment.

This detachment had for its programme:-

- (1) Levelling from Comilla to Chittagong.
(2) Levelling from Brāhmanbāria, viä Dacca and Goalundo to Pāchuriā, by road and across country, crossing the Meghnā, Lakhyà, Dhaleswari, and the Padmā or Ganges rivers. The distances across these rivers being respectively, 65, 35, 52, and 109 chains of 66 feet length.
(3) Páchuria along the railway line to Faridpur, and thence across. country to Barisāl.
(4) Levelling in Darjeeling.

The line Comilla to Chittagong.-The levelling from Comilla to Chittagong conneots Pārratīpur, viá Gauhāti and Akhaura, with the tidal station at Chittagong with an error of 1.382 feet as given below.

The line Brähmanbäria to Pächuriā.-The line Brähmanbäria to Pāchurià closes the circuit Porādaha, Pārvatīpur, Gauhāti, Akhaura, Pāchuriā, Porādaha, with an error of $2 \cdot 706$ feet as given below.

Lines.	$\begin{gathered} \text { Distance } \\ \text { in } \\ \text { miles. } \end{gathered}$	Unadjuated difference of orthometric heights in feet.	$\mathbf{Y}_{\text {side }}$
$\left.\begin{array}{cc} \text { G. T.S. } & \\ \square & \text { at Pārvatīpur above Mean Sea } \\ \text { B: } \mathrm{M} . & \text { Level. } \end{array}\right\}$		$\begin{aligned} & +114.564, \\ & (\text { Vide Volume } \\ & \text { XIX B). } \end{aligned}$	
$\left.\begin{array}{ccc}\text { G. T. S. } & \\ \text { B. M. } & \begin{array}{l}\text { Qārvatipur to " } 1895 \text { " } \\ \text { Gauhāti } \\ \text { tion. }\end{array}\end{array}\right\}$	$228 \cdot 5$	+56.690	$\begin{gathered} 1901-02 \\ \text { and } \\ 1905-06 \end{gathered}$
From " 1895 " at Gaubāli Railway Station			
$\left.\begin{array}{c} \text { G.T.S. } \\ \text { to } \\ \text { B. M. } \\ \text { at Akhaura Railway Sta- } \end{array}\right\}$	$283 \cdot 5$	-152342	$\begin{gathered} 1910-11 \\ \text { and } \\ 1911-12 \end{gathered}$
$\left.\begin{array}{ccc} & \text { G. T.S. } & \\ \text { From } & \\ \text { B. M. } & \text { at Akhaura } & \text { Railway } \\ \text { G. T. S. } & \\ \text { O. } & \\ \text { B. M. } & \text { Tidal test Bench-mark } \\ & \text { "A" at Chittagong. }\end{array}\right\}$			
	$131 \cdot 3$	-2.864	1912-13
M. W. L. at Chittagong below Tidal test Beach-mark "A" at Chittagong.	\cdots	-14'666	. \cdot
	$843 \cdot 3$	+1.382	

Lines,	Distance in miles.	Unadjusted difference of orthometrle heights in feet.	Year.
$\left.\begin{array}{cll}\text { G.T.S. } & & \\ \text { From } \begin{array}{c}\text { D. M. }\end{array} & \text { at Porādaha } & \text { Railway } \\ \text { Station } & \\ \text { G. T. S. } & \\ \text { to } & \text { at Pārvatipur. } & \end{array}\right\}$	$129 \cdot 1$	$\begin{aligned} & +68.008 \\ & \text { (Vide Volume } \\ & \text { XIX B). } \end{aligned}$	1901-02
$\left.\begin{array}{cccc} & \text { G.T.S. } & & \\ \text { Prom } & \text { Pārvatipur to "] } 895, " \\ & \text { B. M. } & \text { at Gaahāti } & \text { Railway } \end{array}\right\}$	$228 \cdot 5$	$+56690$	$\begin{gathered} 1910-11 \\ \text { and } \\ 1!11-12 \end{gathered}$
$\left.\begin{array}{c} \text { From " } 1895 \text { " at Gauhāti Railway Sta- } \\ \text { G. T.S. } \\ \text { to } \begin{array}{c} \text { tion } \\ \text { B. M. } \end{array} \text { at Akhaura Railway } \end{array}\right\}$	283•5	$-152 \cdot 342$	1911-12
$\begin{gathered} \text { G. T.S. } \\ \text { From } \\ \\ \text { B. M. } \end{gathered} \begin{gathered} \text { at Akhaura } \quad \text { Railway } \end{gathered}$			
$\left.\begin{array}{cc}\text { G.T.S. } & \\ \text { D } & \text { at Pāchuriā Railway Sta- } \\ \text { Minor } & \text { tion } \\ \text { B. M. } & \end{array}\right\}$	136.8	$+9 \cdot 4.95$	1912-13
FromG. T. S. \square at Pāchuriā Railway Minor Station	$45 \cdot 6$	+20.767	1899-1900
	$823 \cdot 5$	$+2.706$	

Closing errors.-A portion of the error of 1.382 feet generated on the line Pārvatipur to Chittagong may be due to the difference between mean sea level and mean water level at Chittagong, this being a riverain port. The tidal station at Chittagong is only about 12 miles up the river, and therefore the maximum difference between mean sea level and mean water level may be assumed to be not more than 0.3 of a foot.

This would show that the rest of the error, viz., 1.082 feet, is due to levelling. Now as the portion between Chittagong and Akhaura has no unusual features, and the distance between the two points is about 131 miles, it may safely be assumed that nearly the whole of the above error lies between Pärvatipur and Akhaura.

As shown in the above tables, the error in the whole circuit is 2.706 feet,* it follows therefore that an error of 2.706 feet - 1.382 feet $=1.324$ feet, has been generated between Alzhaura and Porädaha. As regards the error between Pārvatipur and Akhaura, the most likely places for the occurrence of a gross error are, the river crossing at Dhubri which was done by the tide-pole method only, and the bill section from Gauhāti to Dumpep, a rise of about 5,917 feet in a

[^5]distance of 81 miles, and from Dumpep to Tharia Glāt, a fall of about 5,976 feet in a distance of 25 miles.

With refcrence to the error of $1 \cdot 324$ feet between Akhaura and Porädaha in a distance of 182 miles, the weak points of this line appear to be (a) the single levelling between Pāchuriā and Porádaha, and the various river crossings, previously mentioned, which were done in the course of the levelling.

With a view to locating the above errors as far as possible, it is intended during the coming field season, to repeat the river crossing at Dhubri by means of "Vertical Angles" and the "Target" methods, and to revise the section, Pācluriá to Porâdaha, by double levelling.

River crossings by the "Target" method.-The three rivers crossed by the "Target" method with levels were the Meghnā (65 chains), the Lakhyà (35 chains), and the Dhaleswari (52 chains).

The target is rectangular shaped and is made of wood 12 inches by 6 inches. with a 3 -inch square opening in the centre and fitted with a thin brass strip for the reading of the graduation on the staff. A white fan shaped strip is painted on a black ground on each side of the aperture, thus allowing for fine intersections with the level at a considerable distance. It is provided with suitable springs and rollers which enable it to be worked up or down the levelling staff with ease. 'There is also a clamping screw to clamp the target to the staff for the final reading.

When crossing the above mentioned rivers sites were selected after careful reconnaissances' so as to have both rays from the instrument to the staves passing over water, and the distances to the staves equal.

Invariably both levels were used and olservations taken by the two levellers. During the course of the observations the height of the instrument was frequently altered so as to avoid bias in reading the staff, suoh as there might have been had the instrument been kept at the same height throughout the observations. Observations for the crossing of the Meghnā and Lakhyā rivers were taken on one day each only. The results gave the probable error of observation for the crossing of the Meghna river as ± 0.0045 of a foot, and for that of the Lakhyā river as ± 0.0004 of a foot. Observations were taken on several days at the crossing of the Dhaleswari river, the probable error of observations for this crossing being ± 0.0034 of a foot.

River crossing by the "Vertical Angles" Method.-The following description of the method employed in carrying a line of levels across the Padmá or Ganges river, at Goalundo, is given verbatim from the report by Captain V. R. Cotter, I.A., who was in charge of these operations.

This work was undertaken in February 1913, by Captain V. R. Cotter, assisted by Mr. O. N. Pushong.

The breadth of the river at this part varying from a little over a mile to four miles, it was decided to do the crossing with theodolites.

Two twelve inches theodolites, viz., Nos. 2 and IV, were used. Their micrometer heads were turned through a right augle, so that the wires read vertical arcs, and the value of one division of the micrometer of each theodolite was determined by setting the telescopes to solar focus and comparing their values with the values of the eyepiece micrometer of No. 1 zenith sector. The level values were obtained by means of the level tester in the Dehra Dūn bar room.

On arrival at Goalundo it was found that one of the theodolite pillars was not suitably placed. It was situated about three hundred yards from the river
bank, whereas the pillar on the other side was within ten yards of the bank. A new pillar was accordingly constructed on the Goalundo side of the river, also within ten gards of the bank. The atmospheric conditions on both banks were very similar. There was no stretch of sand on either side, and the rays of light from both signals traversed only these strips of ten yards of land, the rest of the course of both rays being over water.

The methods employed differed a little from those employed in former operations of the same nature. Endeavours were made (1) to ensure that the rays of light from both signals should pass through the same strata of air ;
(2) to ensure absolutely simultaneous intersections of the signals by both observers.

To obtain condition (1), experiments were made to see whether it was possible to utilize the object glass of each theodolite as the sigual for the theodolite on the opposite bank. The want of illumination inside the observatory tents made this idea impracticable. The signal eventually decided on was a 6 -inch heliotrope of which the back was painted with a white mark. This signal was placel on the pillar, over the station mark, the centre of the signal being thus abont six inches above the mark.

This meant that there was a space of about three feet six inches between the centre of the axis of each theodolite, and the signal ljeneath it. The reciprocal rays crossed somewhere about the middle of the river, and diverged to a distance of about this amount.

To obtain condition (2), the following procedure was adhered to--(a) Each observer directed his theodolite to a point just a little above or below his signal, clamped the vertical limb, and took the readings of the vertical limb microscopes. (b) At a prearranged sigual both observers went to their respective theodolitics, and read their levels. (c) As soou as Captain Cotter saw that Mr. Pushong was behind the theodolite and the position of his legs showed that he had commenced to take intersections, the former commenced to take intersections, with the eyepiece micrometer, continuing to do so until it was evilent from the latter's position that he had ceased to observe.

Both observers then read their levels again, and took four extra readings of the limb microscopes. This completed an observation on one face.

Face was changed after every two observations and the face lefts and face rights were combined in pairs to give the data for one value of the difference of licight.

Fifty such values were obtained, each of which involved tour limb settings. As each limb setting involved an average of eight micrometer intersections, some sixteen hundred intersections were made, i.e., eight hundred to each sigual ; and although these intersections were not divided so as to be absolutely simultancous on both sides of the river, they may be correctly described as occupying approximately the same intervals of time.

It should be mentioned here that the distance between the pillars on opposite banks was obtained by triangulation with a 6 -inch micrometer theodolite and the mean value found to be 109 chains. The two values obtained differed by less than a foot. As a differchee from the true value amounting to one chain would not affect the resulting difference of height, this result was considered as having an accuracy much above the requirements of the work.

After the theodolite observations had been completed, the pillars were connected by levelling to permanent mariks adjacent to them.

As such a large number of intersections had been taken, not confined to the time of minimum refraction, but spread over several hours of the day, a careful analysis of the results was made. The results of this analysis appeared to prove :-
(a) That the method of observing tended to give practically simultaneous reciprocal observations.
(b) That the values of height obtained between the hours of 10 A.M. and 1 A.m. were as good as those obtained at the time of minimum refraction.
(c) That the co-efficient of refraction appeared to change momentarily to just as great an extent at the time of minimum refraction as at other times. At the time of minimum refraction it changed in both directions, but at other times it rose or fell regularly.
That the co-efficient of refraction was unusually high, the highest being 0.41 and the lowest 0.10 .

A value of the difference of height having a probable error of $= \pm 0.0057$ of a foot was obtained by accepting all the observations irrespective of the time of day at which they were carried out. The final value of the difference of height accepted was, however, obtained by weighting the observations according to the apparent behaviour of the atmospheric refraction as disclosed by the simultaneous observations.

The detailed discussion of the results is being deferred for incorporation in a professional paper, after the carrying out of some of the other river crossings which have to be done during the next field season.

Levelling in Darjeeling.-The levelling in Darjeeling District was carried out in the Cantonments of Lebons and Takdah and also in the Happy Valley landslip area within the Darjeeling Municipality.

The object of this work was to supply sufficient spirit-levelled heights to enable the detail Surveyors to lay down contours on the large scale maps of the abore areas which were thon heing surveyed.

The services of Mr. Syed Zille IIasuain who had previously supervised similar levelling for the new capital at Delhi, were temporarily borrowed from No. 10 Party to take charge of the detachment.

The levelling in Lebong Cantonment and the Happy Valley area was based on the Trigonometrical height of Olservatory Hill h.s. (Darjeeling) taken as 7,162 feet. The levelling in Takdah Cantonment had for its origin the Trigonometrical height of Deoral Danda (Takdah) h.s. taken as 6,760 feet.

The general procedure adopted in carrying out all the levelling in the Lebong and Takilah Cantonments and also in the Happy Valley area was practically the same as that employed in the levelling done for the now Capital at Delhi in season 1911-12. Tho work consisted of circuits and subecircuits interlaced in such a manner that numerous checks were supplied at short distances and it was impossible for any gross error to have crept into the work without heing at once detected. All the precautions generally taken in levelling of precision were duly observed in this work, excejt that the staves were not guyed. Spirit-levelled heights were given of points at an average distance of about 400 feet apart to enable the contours to be drawn as easily and accurately as possible.

The bench-marks whose heights were determined consisted of (1) marks on parapets of bridges and culrerts, (2) marks on boundary pillars, (3) marks on
permanent buildings, (4) tops of large wooden pegs firmiy driven into the ground, (5) permanent bench-marks which were specially built by the local
 on them, let into masonry platforms or floors of suitable buildings. The heights of all the bench-marks fixed in the course of the above levelling were computed as the field work progressed, and descriptive lists of all the bench-marks with their heights were prepared. In addition, the position of all the bench-marks were roughly plotted on the existing maps of Lebong, Takdah and the Happy Valley area and their heights were also written alongside their positions. These plots with the descriptive lists of bench-marks were made over to the Director of Surveys, Bihār and Orissa, under whose orders the detail survey was being carried out, as soon as the levelling in each area was finished.

In order to facilitate the identification of the bench-marks by the detail surveyors, every bench-mark was allotted a fractional number, the denominator denoting the number of the section to which the bench-mark belonged and the numerator the serial number of the bench-mark in the section.

For instance $\frac{2}{5}$ denoted the second bench-mark in section number $\mathbf{6}$.
The numbers were boldly painted in black on the bench-marks by the levellers directly they were connected by lerelling. The bench-marks were as far as possible placed in conspicuous positions and in addition, lucid descriptions of the same were prepared and entered in the lists of heights supplied to the Director of Surveys, Bihār and Orissa, with rough plots showing the position of every bench-mark.

Remarks on the country levelled over.-The levelling from Brāhmanbāria to Dacca and thence via Faridpur to Barisāl presented unusual difficulties. There is no road for the greater portion of these lines, consequently it was very difficult to transport the camp equipment from one place to another, boats were generally employed and would sometimes have to do a circuit of 25 miles, whereas by travelling straight across country the distance would not perhaps be more than 4 or 5 miles, levelling, however, was taken as directly as possible across country in order to complete the line to Barisāl. Owing to heavy rains experienced in the month of March, the whole country became very swampy and sodden, and it was difficult to carry the levelling forward.

Nearly the whole of this country is under water till well into the cold weather and owing to the alluvial nature of the soil, it is very likely that the bench-marks will settle more or less in the course of a few years.

No. 3 Detachment.

The following programme of work was allotted to the detachment:-
(1) Levelling from Henzada to Bassein, along the Ngawun river embankment, viâ Ngawum, Lemyethnā, and Ngathainggyaung.
(2) Levelling from Pegu to Mokpalin, by road, canal tow-path, and railway, via Thanatpin and Abya, with branch lines to Myitkyo, and Tãwa Locks of the Pegu-Sittang Canal.
(3) Levelling from Prome to Taundwingyi by road, viâ Allannyo.

From Table 1 of this detachment, it will be noticed that there are several discrepancies between the old and revised values of bench-marks at Pegu, which could not be a scribed to crrors of levelling for the short distances levelled over. The only way to account for them is to assume that the bench-marks concernod
have either risen or settled by the amounts of the differences shown against them.

The check levelling at Prome shows that the standard bench-mark at that place has undoubtedly settled by about 0.04 of a foot.

Outturn of rork.-The combined tabular statement of the three detachments shows the outturn of work of the party.

Standard Bench-marks -The Standard bench-marks at Dacca, Barisāl, and Srinagar (Kashmir) were connected during the field season.

Bench-marks in Fashmir territory.- On all the lines of levelling carried ouťin Kashmir territory, that is from Kohāla to Srinnagar and the branch lines previously mentioned, a new type of bench-mark somewhat similar to the Standard bench-marks, was introduced instead of the usual embedded pattern. The bench-mark consisted of a stone block about $1 \frac{1}{2}$ feet square and 3 feet high, the upper 8 inches dressed in the form of a frustum of a pyramid terminating in a 1 -inch side square. The monolith was embedded in a block of masonry 5 feet square, the upper 2 feet of the stone being above the masonry block. The side of the monolith facing the road was dressed.

The inscriptions on these lench-marks have not leen cut uniformly. some monoliths bear the inscription $\underset{\substack{\text { a.r.s. } \\ \text { b.i.s. }}}{ }$ on the top, the others have the letters ${ }_{\text {gis.s. }}^{\text {u.s. }}$ cut on the dressed side.

Aluminium Stares.-A pair of aluminium staves were tried on the line Murree to Kohala. This is the first time that metal staves have been used in this Department. So far they have not leen successful. They were used along with a pair of wooden staves in the double levelling from Murree to Kohāla, for a distance of about 18 miles, but as the difference between the results given by the metal and mooden staves was large, it was decided to stop using the aluminium staves until further investigations had been made.

The Superintendent of the Trigonometrical Survey inspected the party at Mussoorie on the the August 1913.
table I-No. 1 Detachment.

Table I-(continutd)-No. 1 Detachuent.
Tabular Statement of Outturn of Work, Season 1912-13.

TABLE I－（continued）－No． 2 Detachment．

Section．	Monlb．				Total ncimbe or yzet．		$\begin{gathered} \text { Nomber of } \\ \text { station } \\ \text { st which } \\ \text { inatroment } \\ \text { was set } \\ \text { up. } \end{gathered}$	number of bench－maris connected．												Remarie．
		Linc．	$\begin{gathered} \text { Extrn } \\ \text { Analiary. } \\ \text { Aodila } \end{gathered}$	Total．				Paicari．				Smoordiry．								
								它苞	号品合			Old． 荡 昜		old．					霛	
Comilla to Cliittagong $\{$	Nuvember 1912December 1912.	Wls．chs．Iks．	mls．chs． lks ．	Mle，chs．Iks．	Fcet．	Feet．														－Includes checklevelling atComila．
		471826	$31882{ }^{\circ}$	503708	317．352	317.675	578	．．．	．．．	．．．	1	1	3	3	23	1	6	4		
		516356	35410	$55: 766$	$453 \cdot 156$	462．339	844	．．．	1	．．	1	．．．	5	\ldots	41	．．．	2	5		
$\begin{gathered} \text { Bribinaubearia } \\ \text { Dacca. } \end{gathered} \quad \text { to }\}$	Totals	990182	67292	1057474	770：38	78C．014	1，422	．．．	1	．．．	2	1	8	3	64	1	8	9	2	
	January 1913 Febraary 1913	460238	$40550+$	480788	439．934	452.555	$600+$	1	．．．	．．．	．．	1	3	6	17		13	1		
		190092	．．	190092	131－206	120：708	200	1	1				2		8	\ldots	6			${ }_{\text {II }}^{\text {Incladea check－}}$ laveling
	Totalis Felruary 1913 March 1913 April 1013 May 1913	630330	40550	670880	$571 \cdot 140$	573.263														
Dacca to Rarisil $\{\{$						573263	800	2	1	．．	．．．	1	5	6	25	．．．	19	1	．．．	
		ly 1548	．．．	181548	$160 \cdot 000$	161•712	194	\ldots	．．．	．．．	．．．	．．	1	．．．	9	．．．	2	．．．		
		717916	90376	810292	$467 \cdot 475$	470.018	853	3	．	1	3	2	7	7	27	．．．	8	．．．	\ldots	
		｜ 692392	67380	7617 72	466－858	473．225	806	2	\ldots	．．．		．．	8	．．．	27	\ldots	14	2		
		52332	．．	52332	$45 \cdot 261$		66		1		2		1							
	Total；	1646188	157756	1505946	1，139．594	1，145•928	1，919	5	1	1	5	2	17	7	72	\ldots	24	3	\ldots	
	Grasd Totals ．	3266700	267598	3536293	2，481－272	2，502－205	4，141	7	3	1	7	4	30	16	161	1	51	13	2	

TABLE I-(concluded)-No. 3 Detachment.
Tabular Statement of Outturn of Work, Seayon 1912-13.

Section.	Month.				$\begin{gathered} \text { Toral funuen of } \\ \text { festr. } \end{gathered}$			number of denchimarks connected.														Rexabit.
		Line.	$\begin{gathered} \text { Extms } \\ \text { Ausiliury. } \end{gathered}$	Total.	Risce.	Falle.		Puinatr.		Stcompary,												
														Old.			$\begin{aligned} & \dot{\Delta} \\ & \dot{\ddot{y}} \\ & \dot{i} \end{aligned}$				$\begin{aligned} & \dot{2} \\ & \text { 曾 } \\ & \hline \end{aligned}$	
	November 1812.	$\begin{gathered} \mathrm{Ml} \cdot \mathrm{chax}, \mathrm{ibs} \\ 19579.4 \end{gathered}$			$\begin{gathered} \text { Feet. } \\ 155 \cdot 175 \end{gathered}$	Feet. 155.946	310	-	...	2	1	1	\ldots	\ldots	...	12	17					
Benzads to Buseeir . $\{$	Dicember 1912.	786990	02294	7912 s 4	893.413	9:99543	999		7										
	January 1913 .	- 221786	00476	222262	309:731	301.874		...	1			1	${ }^{6}$	\ldots	14	\cdots	\cdots	
		--_-	[__	-									6	\ldots	\cdots	..	$2 *$	\ldots	...	${ }^{*}$ Tidal B. M
	Totals .	11206570	53076	1261646	1358•324	1387-363	1653	1	1	2	1	9	63	...	\ldots	12	31	...	2*	\ldots	...	
Pega to Makpalin	Jsmuary 1913 .	26 5826	101186	367012	182.989	183.793	438	1	\cdots	1	8	5	6	1	...	1	\ldots	
	Febrasry 1913.	141370	$12{ }^{2} 30$	264000	106.240	104.046	306	\ldots	4	16	\ldots	...	\ldots	1	\cdots	\cdots		-	
	totais .	407196	223816	$63 \quad 3012$	289.229	287.839	744	1	\ldots	1	8	9	22	...	\therefore	\ldots	1	1	...	1	-	
	Fibbruary 1913.	290670	41314	331984	384.261	383-161	398	1	\ldots		6	2	5	2	1	2	\ldots		...	
Prome to Taundmingyi $\{$	March 1913	600912	03870	604782	$2435 \cdot 427$	$2088 \cdot 644$	1110	5	17	\cdots	2							
	April 1913 .	. 223953	40063	264020	251-423	277.379	322	3	12	\ldots		\ldots	\ldots	
	Totals .	. 11115534	85352	1202786	3071-111	2749184	1830	1	6	10	34	2	3	2	\ldots	..	
	Graid totals .	- ${ }^{2733300}$	364144	3097444	4718.664	4424.386	4227	3	1	3	15	28	119	2	3	14	32	1	$2 \cdot$	1	...	

TABLE II.-No. 1 Detachment.
Discrepancies between the Old and Nexo Dalues of Bench-marks.

Check-levelling betzoen Amkhas and Multan City, part of line 55A (Sargodha Khemwālā̀).

G. T. S. At Amkhas B. M. A. D. 1911.	$0 \cdot 0$	$0 \cdot 000$	1911-12	$0 \cdot 000$	0.000
A At Town Hall, Maltan City	1.0	$+8.709$	1911-12	+8.719	$+0.010$
G. T. S. At mosque at junction of 0 roads, Multān. B. M.	1.9	$+9.831$	1911-12	$+9.852$	$+0.021$

Check-levelling at Multān Cantonment, part of line 55 A (Sargodha-Khemwālā).
G. T. S. Embedded a
B. M.
G. T. S. At barrack No. 1 B. I. 0 Lines, Multn̄n.
B. M.
G. T.S. At barrack No. 4 B. I. 0 Linea, Multãa.
B. M.

Standard Bench-mark at Multann
G. T. S. At Stecple Tower, St. O Mary's Charch, Multn̄a.
D. M.
G. 'T. S. At Chaplain's office. St. 0 Mary's Church, Multān.
B. M.
G. T. S. At Block 2A, Station HosB. M pitnl, Multān.
B.
G. T. S. At Block 26, Station HosB. ${ }^{\mathrm{O}}$ pital, Multān.
B.
G. T. S. At N. W. Railway Rest O House, Multā̃.
B. M.
G. T. S. At West end of main plat.

O form, Multād Cantodment
B. M. Railwny Station.
G. T. S. On platfor:n coping oppo-

O site main cesit, Multān
B. M. Cantonment Railvay Station.
G. T. S. At E. end of main platO forn, Multān CantonB. M. ment Railway Station.

$0 \cdot 0$	0.000	1866-67	0.000	0.000
0.0	$+4.558$	1907-08	+4.555	-0.003
0.1	$+2 \cdot 722$	1907-08	+2.723	+0.001
$0 \cdot 1$	$+2 \cdot 406$	1907-08	+2406	0.000
0.2	$+4.880$	1907-08	+4.878	-0.002
c. 3	$+4 \cdot 199$	1907-08	$+4 \cdot 186$	-0.003
$0 \cdot 5$	+4.361	1907-08	+4.358	-0.003
0.6	$+4 \cdot 159$	1907.08	+4•160	+0.001
13	+2.780	1907-08	$+2 \cdot 771$	-0.009
$1 \cdot 2$	$+6.842$	1807-08	+6.832	-0.010
14	$+6.867$	190\%-08	+6.853	-0.014
1.5	$+6.925$	1907-08	+6.910	-0.015

TABLE II-(continued).-No. 1 Detachment.
Discrepancies between tho Old and New Values of Bench-marks-continued.

Revision betroeen Mfultän and Mahīwālä, part of line 55A (Sargodha-Khemwālä) and ;5 (Murghai-Chaoh).

$\begin{aligned} & \text { G. T. S. } \\ & \times \\ & \text { B. M. } \end{aligned}$	Embedded at Multēn Centonment.	0.0	0.000	1866-67	0.000	0.000	
$\underset{\mathbb{N}}{+}$	At Road Bridge over Taliri Nāls.	18.0	-1.840	1866-67	-7.829	$+0.011$	
\bigcirc	At Mahiwala G. T. S.	42•3	+26.9\%	1859.60	+87688	+016 ${ }^{\text {\% }}$	- Mark-Stone found tampered with.

Check-levelling at Ambäla, part of line 61 (Ferozepore-Meerut).

901•6^At St. Patils Church, Ambalts:	$0 \cdot 0$	$0 \cdot 600$	1860-61	0.000	$0 \cdot 000$
$+\quad$ At R. H. A. Memorial, St. Paul's Church, Ambäla.	0.1	+0\%03	1906-07	$+0.513$	+0.009
Standard Bench-mark at Ambila	$1 \cdot 1$	+1.8.\%	1906-7	+1.820	-00009
f. T. S. At Block 6, Station Hos. n pital, Awbta. B. M.	0.4	$+0 \cdot 029$	1906-07	+0.077	+0.0.48
$+\underset{\substack{\text { On Monument Stono, R. C. } \\ \text { Churoh, Atrib玉la. }}}{\text { O. }}$	$1 \cdot 2$	$-3 \cdot 1014$	1906-07	-3.046	-0002
G. T. S. at R. C. Chtitoh, Ambald. 0 B. M.	$1 \cdot 1$	-3.618	1906-07	-3.611	$+0.007$
G. T. S. At N. W. end of "B"plat0 form, Ambãia CantonB. M. ment Railway station.	1.7	- $\because 667$	1906-07	$-2 \cdot 639$	+0.031
G. T. S. At S. E. name-plate of "A" O platform, Ambăla Canb. M. tonment Railway Station.	$1 \cdot 9$	-3.532	1906-07	-3.613	+0.019
G. T. S. At Wealeyan Charch, 0 Ambāla. B. M.	1.0	$+3.704$	190J-07	+3.737	+0033
G.T. S. At Bluck No. 3 of No. 2 O Section Hospital, AmB. M. bēla.	1.2	$+1 \cdot 969$	1906-1)7	$+5 \cdot 002$	$+0.033$
G. T. S. At Block No. 2 of No. 2 9 Section Hospital, Am- B. M. béla.	$1 \cdot 2$	+4.103	1906-07	+4.183	+0:030
$\begin{aligned} & \text { G. T. 8. At Blook No. } 42 \text { (Canteen) } \\ & \text { O } \quad \text { R. H. A. Lines, Aınbāla. } \\ & \text { B. M. } \end{aligned}$	2.0	$+10.090$	1906-07	$+10 \cdot 114$	+0.024
G. T. S. At Blook No. 43 (Sergeant's) 0 R. H. A. Linee, Ambala. B. M.	$2 \cdot 1$	+11.194	$1906 \cdot 07$	+11.479	-11005

TABLE II-(continued).-No. I Dbtachment.
Discrepancies between the Old and New Falues of Benck-marks-comtinued.

Revision betrceen Ambăla and Meerut, part of line 61 (Ferozepore-Meerut).

$901 \cdot 6 \uparrow$ At St. l'sul's Church, Ambàla.	0.0	0.000	1860-61	0.000	0.000	
G. T. S. Stone B. M. at Jagãhri .	$30 \cdot 8$	+21.888	1861-62	+22.592	+0.704	
G.T.S. ,, ., Amadal ${ }^{\text {un }}$	$35 \cdot 9$	+4.417	1861-62	+5.181	+0.784	
'G. T. S. " ,	45.0	-5.182	1861-62	-4.528	+0.655	
G. T.S. \quad par Falli, Sahēranpur. $\quad \begin{aligned} & \text { Megh Cha- }\end{aligned}$	$52 \cdot 3$	$+5.609$	1861-62	+6.210	+0.610	
G. T. S Stone B. M. at Blätkheri .	$64 \cdot 0$	-25 350	1861-62	$-24 \cdot 730$	+08820	
G.T.S " ", Deoband	$76 \cdot 7$	$-69 \% 02$	1861-62	-68.998	+0.704	
Top of milestone Muzaffarnagar 4, at Rāmpur Village.	88.0	-104.773	1905-06	-103.932	+0.841	
G. T. S. Stone B. M. at Muzaffarnagar.	$92.0\{$	$\left\{\begin{array}{c} -111.638 \\ -111.617 \end{array}\right\}$	$\left\|\begin{array}{c} 1861-62 \\ \text { and } \\ 1905-06 \end{array}\right\|$	-110.984	$\left.\begin{array}{l}+0.651 \\ +0.693\end{array}\right\}$	Tino values shown in Vol. XIX B.
Top of milestode Muzaffarnagar 3 .	95.0	-99.669	1905-06	-98.475	+1.194 \dagger	\dagger Position of milo-
Ground level mark-stone at Begarazpur G. T. S. Tower Station.	98.8	-85.705	1861-62	-85.088	+0.17	
G. T. S. Stone B. M. at Khatauli .	$105 \cdot 3$	-111.822	1861-62	-111.962	-0.140	
Plinth of Ganges Canal M. S. No. 62	$105 \cdot 5$	-114.590	1861-62	-114.037	+0.558	
+ At St. John's Church, Meerat	124.7	-162:349	1861.62	-161.793	+0.547	

Check-levelling at Saharanpur, part of line 61 (Ferozepore-Meerut).

TABLE II-(continued).-No. 1 Detachment.
Discrepancies between the Old and New Values of Bench-marks-continued.

Denerfptian of bench-merte of the original levelling that were connected for obeok-lerelling.		Ougbayed haiget above (t) ob bitow (一) GTARTING bench-mabe ab detrbinind it				Rexame,
		Original levciling.	Date.	Chectlevelling, 1012-19.		
-	Miles,	Feet.		Feet.	Feet.	

Check-levelling at Muzaffarnagar, part of line 61 (Ferozeport-Meerut).

Ground level mark-stone at Begarazpur G. T. S. Tower Station. 0 On stone prism opposite F. S. 4 between miles 3 and 4 Mazaffarnagar.	0.0 $3 \cdot 1$	0.100 -17.856	$\left\lvert\, \begin{gathered}1861-62 \\ 1905-06\end{gathered}\right.$	0.000 .-17.842	0.000 +0.014	
Top of mile 3 from Muzafernagar	$3 \cdot 6$	-13.984	1905.06	-13.387	$+0.577$	Position of mile. stone ohanged.
0 At stone prism opposite F. S. 5 between miles a and 3 Muzaffarnagar.	$4 \cdot 3$	$-15 \cdot 989$	1905-06	-15.960	+0.089	
G. T. S. Stone B. M. at Muzalfarnagar.	$6.7\{$	$\left.\begin{array}{l} -\mathbf{2 5 . 9 1 2} \\ -25.933 \end{array}\right\}^{*}$	$\begin{gathered} 1861-62 \\ \text { and } \\ 190.5-06 . \end{gathered}$	$-25 \cdot 696\{$	$\left.\begin{array}{l} +0.016 \\ +0.037 \end{array}\right\}$	- Two valueg shown in Vol. XIX B.
A On stone at gate of Tuwn Hall, Muzbffarnagar.	6.9	-12.852	1905-06	-12.840	$+0.012$	
G. T. S. At Sessions Judge's Kachah0 ri, Muzaftarnagar. B. M.	$7 \cdot 1$	-8.101	1905-06	-8.078	+0.023	
Standard Benol-mark at Muzaffarnagar.	$7 \cdot 4$	-8.746	1905-06	-8.724	+0.022	
Top of mile-stone Mazaffarnagar 4 at Rēmpar Village.	108	-19.068	1905-06	-18.844	$+0.024$	

Check-levelling at Meerut, part of line 61 (Ferozepore-Mecrut) and of line 62 (Meerut́-Delhi).

+ at St. John's Church, Meerut.	0.0	$0 \cdot 010$	1861-62	0.000	0.000
Standard Bedch-mark at St. John's Charoh, Meerut.	0.1	$-1 \cdot 310$	1905-06	$-1 \cdot 305$	-0.005
G.T.S. On culvert in Church O Street $\frac{1}{2}$ mile B. of St. B. M. John's Charch, lieerut.	0.6	$-3 \% 60$	1905-06	-3.244	$+0.016$
G. T. S. At protecting wail of Catch0 water on the Mall, B. M. Meerat.	$1 \cdot 4$	-1.086	1805-06	$-1: 063$	-0.027
G. T. S. At Snitor's waiting shed 0 at Depaty Commissinner's B. M. Kachahri, Meerut.	2.2	-4.426	1905-06	-8.837	-0.011
Etandard Bench-mark at Publir Works Department offices, Meerat.	2\%	-7975	1905-06	$-7 \cdot 994$	-0.019
G. T. A. At General Mile Pillar, 0 Mecrut. B. M.	$0 \cdot 8$	- $\quad 8.6$	1.666.67	-6.644	$+0.012$
\boldsymbol{V} At Bomru Bridge, Meerut.	$1 \cdot 2$	-1.	$1866 \cdot 67$	-4.585	-0.009

TABLE II-(continued).-No. 1 Detachment.
Discrepancies between the Old and New Values of Bench-marks-cuntinutu.

Check-levelling at Delhi, part of line 62 A (Meerut-Delhi).

Standard Bench-mark at Delhi.	0.0	0.000	1906-07	0.000	0000
G. T. S. At Beresford Memorial, St. 0 James Church, Delhi. B. M.	1.8	$-57 \cdot 176$	1906-07	$-57 \cdot 157$	+0.019
G. T. S. At st. James Church, 0 Delhi. B. M.	1.8	-58.262	1906-07	$-58 \cdot 243$	+0.019
G. T. S. At Mutiny Memorial, O Telegraph office, Delhi. B. M.	$2 \cdot 1$	-60.839	1906-07	-60. 519	$+0.320$
G. T. S. At Pirghaib G. T. S. Tuwer O Station, Delhi. B. \mathbf{M}.	$1 \cdot 0$	$+29.992$	1906.07	$+\because 9.995$	$+0.003$
G. T. S. At King Asoka's Pillar, o Delhi. B. M.	1.2	$+33437$	1906-07	+ 93440	+0.003
B. O. M. on N. side of Mutiny Memorial Tower, Delhi.	$1 \cdot 4$	+34.941	1906-07	+34.943	$+0.002$
B. O. M. on E. side of Mutiny Memorial Tower, Delhi.	$1 \cdot 4$	+34 222	$19 \cdot 6-07$	+34.222	$0 \cdot 100$
G. T. S. Near S. W. Tower of Delhi 0 B. M. Railpay Station.	$1 \cdot 6$	$-4 * \cdot 116$	1906.07	$-48 \cdot 151$	-(1) 035
G. T. S. At S. E. Tower of Delhi 0 B. M.	1.5	-48.000	19\%.6.07	--48.038	-0.038

TABLE II-(continued).-No. 1 Detachament.
Niscrepancirs between the Old and Nev Values of Bench-marks-continued,

Deseription of bench-marke of the original levelling that were counected for check-leveling.		Oberfybd hbight afovi (t) of bilow (-) arabtipabench-Kabi as DETByMINED BY				Remarise
		Origlnal jereflling.	Date.	Check. levelling, 1012-13.		
-	Miles.	Feet.		Feet.	Feot.	
G. T. S. At R. C. Church, Delhi. 0 B. M.	$2 \cdot 0$	-51.699	1906.07	- 51.700	-0.001	
G. T. S. At Lahore gate, Delhi 0 Fort.	19	-64:135	1906-07	$-64 \cdot 131$	+0.00.4	

Chesk-levelling at Muttra, part of line 62 (Hathras-Muttra).
Standard Bench-mark at Muttra.
G. T. S. At Muttra Junction RailB. N. way Statiou.
G. T. S. At Dak bungalow, Multra. B. M.
G. T. S. At Culvert at junction of O roads, Muttra.
B. M.
G. T. S. At Muttra Cantonment O Railway Station.
B. M.
G. T. S. At Muttra Cantonment \square Railway Station.
B. M.
G. T. S. At overbridge nt S. end of 0 Jumna bridge.
B. M.
G. T. S. At N end of N. E. abutment O of Jumna bridge.

0.0	0.000	1905.06	0.000	0.000
0.2	+21.583	1905.06	+21.561	-0.022
0.0	-7.487	1905.06	-7.504	-0.017
0.8	+5.680	1905.06	+5.690	+0.010
1.4	+13.527	$1905-06$	+13.529	+0.002
1.5	+18.735	1905.06	+13.712	-0.023
2.1	+1.857	1905.06	+1.864	+0.007
2.4	+1.619	1905.06	+1.634	+0.015

B. M.

Check-levelling at Murree, part of line 56 C (Räwalpindi-Murree).
G. T. S. At Rock near Cantonment B. M. Marree.
G. T. S. At Rock at St. George's O Terrace, Murree.
J. M.
G. T. S. At Rock at Holy Trinity O Church, Murree.
B. M.
G. T. S. At Rock below Lady 0 Robert's Home, Murree. B. M.

0 At Rock near drain No. 26. G. T. S
B. M.
G.T.S. it " " "No. 27.
B. M .
G. T.S. At Rock between drains 0 Nos. 44 and 45.
B. M.
G. T. S. At Rock between draing O Nom. 540 and 541.
B. M.

0.0	0.000	1910-11	$0 \cdot 000$	0.000
0.3	$-13 \cdot 808$	1910-11	-13790	+0.007
0.4	+7.989	1910.11	+7.984	+0.005
$0 \cdot 8$	$+108 \cdot 115$	1910-11	$+106 \cdot 130$	+0.015
1.6	+15.601	1910-11	$+15 \cdot 625$	+0.024
1.7	-3.491	1910-11	-3.474	+0.017
$2 \cdot 3$	-137.917	1910-11	$-137 \cdot 947$	-0.030
1.9	-380700	1910-11	-380.691	+0.009

TABLE II-(continued). $\boldsymbol{\rightarrow N o}, \&$ Detschiment.
Diserepancies between the Old and Vew Values of Bench-marks-continued.

Check-levelling at Comilla, part of branch tine 77-F (Gंauhāti to Comilla and Cíhttagong)
-G. T. S. At Comilla Dak bungalow B. M.
G. T. S. At Comilla Railmay Station B. M.
G. T. S. At District Board Office, 0 Comilla. B. M.
G. T. S. At Kachahri, Comilla B. M.

0.0	0.000	0.000	0.000
0.3	+5.187	+5.189	+0.002
1.3	+4.959	+4.958	-0.007
1.4	+5.578	+5.589	+0.011

Check-levelling at Brāhmanbatrid; part of branch line 77-I (Akhauraito Dacca and Firidpuri.
G. T. S. At Brähmanbãria Inspec0 tion bungalow.
B. M.
G.T.S. On E. Home Signal at 0 Drähmanberin Railway B. M. Station.
G. T. S. At Brehmanbīria Railway O
B. M.
Q. T. S. At Brăhmanbāria Railvay B. M.
G. T. S. On bridge opposite T. P. B. M. No. $\frac{135}{12}$.
G. T. S. On bridge between T. P. Nos. $\frac{137}{887}$
(, T. S. On bridgo between T. P. D. M. Nos. ${ }_{5} \frac{138}{\&}$.

0.0	$0 \cdot 000$	0.000	0.000
0.2	$+2 \cdot 210$	+2215	$+0.005$
0.4	$+0.715$	+0.721	$+0.006$
0.4	+8.874	$+8 \cdot 871$	-0.003
1.5	+4.434	+4:4,36	$+0.002$
$3 \cdot 1$	+1792	+1.773	-0.019
$4 \cdot 1$	$+0.690$	$+0.711$	+0.021

TABLE II-(continued).-No. 3 Detagement.

Discrepancies between the Old and New Falues of Bench-marks—continued

Check-levelling at Henzada, part of Provisional line 88 (Prome to Rangoon).

Check-lerelling at Pery", part of Provisional line 87 (Elephant Point to Myitkyina).

TABLE II-(continuef).-No. 3 Detichment.

Check-lcvelling at Prome, part of Provisional line 88 (Prome to Rangoon), 1911-12.

Standard Bench-mark at Prome	$0 \cdot 0$	$0 \cdot 010$	0.000	$0 \cdot 000$
A On plidth of Municipal Tank House, Prome.	$0 \cdot 2$	-18.163	-18.142	+0.021
$\left.\begin{array}{c}\text { D. P. W. } \\ \text { R. L. .93. } \\ \text { Bench. Mark }\end{array}\right\}$at S. W. corner of of	$0 \cdot 3$	-25.83!	-25.803	+0'036
$\left.\begin{array}{c}\text { Bench-Mark } \\ \text { Upper Pegu }\end{array}\right\} \begin{aligned} & \text { of } \\ & \text { Engineer } \\ & \text { Assistant } \\ & \text { en }\end{aligned}$				
Ronds Division (house, Prome.				
0 On rock 312 feet from B. N. M. Г. 177.	$1 \cdot 1$	$+5.240$	+5.286	+0.097
G. T. S. On trunk of Siras tree 362 0 B. M. feet from F. P. $\frac{174}{5}$.	$3 \cdot 4$	-22.892	$-22 \cdot 838$	+0.054
Q. T. S. On rock 228 feet N. E. of 0 B. M. F. P. $\frac{173}{7}$.	$4 \cdot 1$	+12.990	+18.055	$+0.065$

TABLE II—(conchuded).-No. 3 Detachment.
Discrepancies between the Old and New Values of Bench-marks-coneluded.

Check-levelling at Prome, part of Provisional 88 (Prome to Rangoon), 1911-12.
G. T. S. On plat forn of outer signal 0 lever opposite 9rd class B. M. passenger's entrance of l'rome Railway Station.
G. T. S. On plinth of S. W. return0 wall of a skew bridgo B. M. 10 chs. N. E. or main entrance to Shwe l'shan Dam Pagoda.
G.T. S. On plinth of a rectangular O House, S.E. of Shwe B. M. Tahan Daw Pagoda.
G. T. S. On trunk of tree 104 feet O. N. E. of Mile post 9.
G. T. S. On trunk of tree 164 feet O from Mile post 3.
B. \mathbf{M}

0.6	-23.709	-23.674	+0.033
0.8	-23.760	-23.723	+0.037
0.9	-18.454	-18.417	+0.037
2.4	-5.586	-5.531	+0.055
3.4	+1.572	+1.626	+0.054

TABLE III.
LK of Great Trigonometrical Survey Stations connected by spirit-levelling, Season 1912-13.

TABLE IV.
Differences betwoen levellers.

ROUGH DIAGRAM OF TRAVERSE

(Not to Scale)
\ldots

APPENDIX.

REPORTON THE DELIMITATION OF THE BOUNDARY BETWEEN NEPÁL State and naint tál، district.

By Lirutenant a. A. Chase, R.E.

A boundary commission assembled in February 1912 to lay down the boundary between Nepāl and Nainī Tāl District. It was found that even if the boundary were correctly laid down in that year it would be almost impossible to lay it down in following years without the assistance of an expert as the boundary was a curvel one and did not follow any feature on the ground. In former years it followed the main channel of the Sārda River but the river has since changed its course.

It was decided therefore to alter the boundary to one of three straight links with a practically even exchange of territory in the alteration.

The Survey of India was asked to lay down on the ground the three straight links as agreed to by both Goveruments on the Map. As the straight lines were long, and as it was desirable that pillars erected on them should be accurately placed, so that if any were washed away the boundary could again be found on the ground by aligning flags from the nearest two pillars that might remain it was decided to run a preliminary traverse close to the proposed straight links, from the traverse stations of which points on the new boundary could be fixed.

This preliminary traverse was started on the 1st November 1912.
The Commission as noted in the margin assembled on 15th December 1912 and it was decided that day that Lientenant Chase should proceed, with the assistance of three Foresters, to cut the boundary 20 feet wide and erect pillars at such distances apart as would ensure intervisibility; should erect such reference pillars as he thought advisable; and should make a survey of the boundary to provide for its location in future years; that the British Forest Officers should reassemble to inspect the boundary at the end of Fcbruary 1913, when it was hoped that the work would be finished.

It was now also decided that it would be convenient if the Nepal reprosentatives remained on the spot with Lieutenant Chase, so that if any points cropped up, he could settle them at once without having to refer to the commission.

The preliminary traverse noted in paragraph 2 was not finished until the lst January 1913; the interval, however, was utilized in laying out additional lines of traverse on which the survey would be based.

On lst January work on cutting the boundary was started and continued up to 7th February ly which time a twenty-foot line was cut.

The Commission assembled again on the 25th February and proceeded to inspect the new boundary.

A "Khasra" of the boundary (attachel) was then drawn up by Lientenant Chase, and submitted to the Commission, who accepted it as a true description, and agreed that for local purposes the new boundary would come into force from 1st March 1913.

Four points A, B, E and G Fere shown on the ground as being the ends of the three links agreed upon br the Com. mission in J'ebruary 1912.

These points were checked and found to agree with those depicted on the maps agreed to by the two Governments.

These four points were picked up in the preliminary traverse and values were obtained for their co-ordinates.

A glance at the sketch will show that if A and B are the two terminal points of a straight line and A, C, D, E, is a traverse line, A, C, D, and E being traverse stations, it is possible to select any point X on the line $A B$ and find out the distance and bearing of X from the nearest traverse station, say D, by similar triangles.

Thus we select on the map a point X, measure its distance on the map from point A to the nearest chain and then by similar triangles having ascertained the values of the co-ordinates of X we find out the distance $D X$ and the angles $\mathrm{C}, \mathrm{D}, \mathrm{X}$, and $\mathrm{E}, \mathrm{D}, \mathrm{X}$.

This procedure was followed right through. The distance $\mathbf{D} \mathbf{X}$ was computed and then laid out with a theodolite on the ground and then the angles $D, \mathbf{X}, \mathbf{X}^{\prime}$ and $\mathbf{D}, \mathbf{X}, \mathbf{X}^{\prime \prime}$ were also computed and laid out, the points \mathbf{X}, X^{\prime} and $X^{\prime \prime}$ being marked by pegs, the distance $X X^{\prime}$ and $X X^{\prime \prime}$ being about 5 chains. Points similar to X were given to the foresters about a mile apart with instructions to prolong the straight lines $\mathbf{X} \mathbf{X}^{\prime}$ and $\mathbf{X X} \mathbf{X}^{\prime \prime}$ until they met similar lines being run by the foresters on either side.

After the line had been cut through by the foresters it was necessary to check the positions of the pegs X to ensure that they had been placed exactly in the line A B. A flag on the position of reference pillar No. 1 described in the Khasra had been placed in prolongation of the line $B A$, on high ground and risible from any point in the line $B A$, and with the aid of this Flag it was possible to line up all the pegs between A and B.

In the case of links B, F, and F, G, as shown in the sketch, the lengths of the links being small, from any point in the centre of the link the ends were risible, and it was an easy matter to line up the pegs for Boundary Pillars.

The preliminary traverse being good it was never found necessary to move the pegs X by more than 2 feet in order to bring them into line with the end of the links A, B, F, and G.

The position of reference pillar No. 1 was found by trial and error, moving the theodolite until it was found to be in line with the points A and B.

The positions of the pegs X were selected at such distances apart as would render them suitable as sites for boundary pillars.

It was found that the foresters were not able to prolong and cut straight lines through the jungle for distances much over a mile; over this distance the line was almost invariably deflected to one side or the otlier.

In practice a 6 -foot line was first cut until it met the line from north or
south and having ascertained that this was correct the line was broadened to 20 feet.

The positions of the Boundary Fillars from Nos. 1 to 9 as will be seen from the map, lie on islands in the river, and have been chosen so as to give a reasonable chance of most of them remaining for two or three years.

It will be necessary, however, to have the forest line cleared every year and to re-erect any pillars that get washed away.

The positions of such pillars on the ground can easily be located by lining up with flags on to the reference pillar No. 1 which is visible through a telescope from all points on the northernmost link.

The pillars on the centre and southern links stand on ground that has not been inundated for many years and so may be said to be safe.

The ends of these two links, however, are intervisible and re-erection of pillars is therefore a simple matter.

Official description of boundary between Nepāl State and the District of Nainū Tàl.

Priface.

The boundary between Nepāl and the District of Naini Thal in the United Provinces lies in the midstream of the Sārda River until the latter bifurcates at a point $\frac{3}{4}$ th mile south of the head works of the Tanakpur Canal.

From this point the boundary runs south in three straight links to the site of the old Reference Pillar No. 27 erected by Mr. Cusson and is now marked by boundary pillar 17.

In the description below these links have been termed the North, Centre and South links. The North end of the North link lies, as stated above, in the midstream of the Särda River and is marized by the point where the prolongation of the North link cuts the midstream. The Southern ends of these three links are marked by boundary pillars 9,13 and 17 . The Northern ends of the Centre and Southern links are marked by boundary pillars 9 and 13. Along these three links intermediate boundary pillars have been erected at an average distance of a mile apart, and these intermediate pillars are placed so as to be intervisible. The positions of the ends of the links were determined by a Boundary Commission which met in February 1912, and accepted by the Government of India in letter No. 337-F., dated 28th May 1912, to the Resident in Nepāl and by the Nepāl Durbar in a letter from the Prime Minister and Marshal of Nepāl, dated I4th March 1912, to Resident in Nepāl. A reference pillar No. 1 bas been ereoted on the hills north of Baramdeo in prolongation of the north link. This pillar is visible through a telescope from the south end of the north link, i.c., Boundary Pillar 9.

Reference pillars Nos, 2 and 3 have been erected on the sites of Mr. Cusson's reference pillars 38 and 39 to determine the position of Boundary pillar 9 which stands on an island in the Sārdā River. Boundary pillars Nos. 13 and 17 have been erected on the sites of Mr. Cusson's Reference pillars Nos. 33 and 27 and are safe from river erosion.

The bearings given in the Synopsis nre reckoned from the North rouad by East, wouth and West and the distances recorded are in Gunter's chains of 66 fect divided into 100 links of $7 \cdot 92$ inches.

To guard against the pillars being damaged by animals a circular treach

5 feet wide and 5 feet deep has been dug round them. Boundary pillars 9,13 and 17 are of the dimensions 10 feet high by 5 feet by 5 feet. Remairing boundary pillars are of dimensions 6 feet high by 4 feet by 4 feet: Reterence pillar 1 is of dimensions 20 feet high by 6 feet by 6 feet. Reference pillars 2 and 3 are of dimensions 6 feet high by 4 feet by 4 feet.

All pillars are made in stone or brick masonry as noted in the Synopsis and their numbers are engraved on stone tablets let into the masonry.

Note on the Preliminary Traverse.-The traverse was started from old Reference Pillar No. 27 (now rebuilt and numbered 17) with co-ordinates referred to Sultānpur G. 'T. S.

The values of these co-ordinates were those taken from the old map published in 1911 and the traverse was run in a series of circuits as shown in the attached diagram. All the old pillars on the boundary were pioked up in this new traverse and their co-ordinates thus found differed from those given on the map in every case from a few links up to 2 and 3 chains.

The differences were not constant and it has therefore led to the conclusion that the pillars were not built exactly over the pegs laid down by the traversers.

It is suggested that the traverser drove in pegs oue year to mark the position of the pillars and that some time afterwards the pillars were erected.

Ls the jungle grows in a year up to 15 feet in height it is conceivable that the pegs were not found and that the pillars were built as near as possible to their true positions.

In the demarcation of 1912-13 the pillars were built within a few days of driving in the pegs to mark their positions.

In order to fix the survey reographically, a connection was made to a G. 'I. S. intersected point Bāmani Bāgh of the North East longitudinal series; page 112 , and a connection was also made to p.p. 3 a pillar on the district boundary between Nainī Thil and Pilibhīt and p.p. 21 a pillar shown as R. p. 29 on the Sārlā River maps of 1911, picked up in the Tarai Main Traverse of 1887-4, page i, together with connections to old B. P. 21 and old B. P. 19 picked up on the Piranpur Tahsil main traverse of 1896, pages 56 and 57.

An attached table shows the difference obtained by bringing the co-ordinates of these to the common origin Sultanpur G. T. S. and it will be seen that the differences are not constant and it has therefore been thought advisable not to insert the Graticules on the 2 inches $=1$ mile map drawn for publication this year.

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \& \multirow[t]{3}{*}{Same of Station.} \& \multicolumn{2}{|l|}{\multirow[t]{2}{*}{}} \& \& 2 \& \multicolumn{2}{|l|}{3} \& \multicolumn{2}{|l|}{4} \& \multicolumn{2}{|l|}{5} \& \multicolumn{2}{|l|}{} \\
\hline No. \& \& \& \& \multicolumn{2}{|l|}{Co-ordinates as fodnd FEOM THE NEW raverse of 1912-13. WITH CO-OBDINATESAS SHOWN IN COLUMN 1.} \& \multicolumn{2}{|l|}{\begin{tabular}{l}
Co-ordinates from the \\
Terai Traverse of \\
887-88-89 \\
Crigin Dayad, G. T'. S \\
Converted to origin
SUltanpur, G. T. S.
\end{tabular}} \& \multicolumn{2}{|l|}{Puraivpur Teifil Traverse by Land Recurds DRPARTMENT IN 1896.
ORIGIN \(A 28^{\circ} 0^{\prime} 0^{\prime \prime}\) Obigin l \(79^{\circ} 57^{\prime} 32 \cdot 82^{\prime \prime}\). CONVERTED TO ORIGI SUltãnpule, G. T. S.} \& \multicolumn{2}{|l|}{Co-ordinates as found from \(\lambda\) AND L GIVEN VOLUME XXXV, N.E. Longitudinal series BȦMani BäGH, \(\begin{array}{lll}\text { A. } 88^{\circ} \& 59 \& 37 \cdot 5^{\prime \prime} \\ \text { L. } 80^{\circ} \& 04^{\prime} \& 21 \cdot 90^{\prime \prime}\end{array}\)} \& \multicolumn{2}{|l|}{} \\
\hline \& \& Meridis. \& Perpendicalar. \& Meridian. \& Perpen-
dicular \& Meridian. \& Perpendi. calar. \& Meridian. \& Perpendi- \& Meridian. \& Perpendicalar. \& Meridian. \& Perpendi
cular. \\
\hline 1 \& Bāmani Bägh Marls \& ... \& \(\ldots\) \& N. 3157:96 \& W. \(1159 \cdot 45\) \& \multirow[t]{2}{*}{.

\ldots} \& \multirow[t]{2}{*}{...} \& \multirow[t]{2}{*}{..

.} \& \multirow[t]{2}{*}{..} \& N. 3167.76 \& W. $1160 \cdot 24$ \& $-9 \cdot 80$ \& -0.79

\hline 2 \& R. P. ${ }^{7}$ \& N. $2300 \cdot 12$ \& W. 1190.95 \& : ... \& ... \& \& \& \& \& ... \& \cdots \& ... \& \cdots

\hline 3 \& P. P. 3 \& \& ... \& N. $22.93 \cdot 65$ \& W. 1199883 \& \multirow[t]{2}{*}{$$
\begin{aligned}
& \mathrm{N} .2298 \cdot 00 \\
& \text { N. } 2519 \cdot 80
\end{aligned}
$$} \& W. 1212.97 \& ... \& \multirow[t]{2}{*}{\ldots} \& \ldots \& ... \& $-4.3 ;$ \& -4.14

\hline 4 \& P. P. 21 \& \cdots \& \cdots \& N. 2515.62 \& W. $1162 \cdot 50$ \& \& W. 1166.79 \& ... \& \& ... \& \ldots \& $-4 \cdot 18$ \& -4.29

\hline 5 \& B. P. 19 \& \& \& N. 2169.80 \& W. 834.75 \& ... \& ... \& N. $2170 \cdot 70$ \& W. $834 \cdot 14$ \& ... \& ... \& -0.90 \& $+0.61$

\hline 6 \& B. P 21 \& ... \& \& N. 2253.18 \& W. $932 \cdot 64$ \& \& \& N. 2254.08 \& W. $932 \cdot 12$ \& ... \& ... \& -0.60 \& +0.52

\hline \& \& \& \& \& \& \& \& \& \& \& \& \&

\hline
\end{tabular}

[^6]Sultänpor, G. r. S. $\begin{array}{llll}\lambda & 28^{\circ} & 25^{\prime} & 08 \cdot 16^{\prime \prime} \\ \mathrm{C} 80^{\circ} & 18^{\prime} \\ 44 & 40^{\prime \prime}\end{array}$

MAGNETIC SURVEY.

No. 18 PAR'TY.
(Vide Index Map 11.)
By Caftain R. H. Thomas, R.e.

The present report deals with the work of the magnetic survey in 1912-13;

Perionkel.
Imperial officer.
Captain R. H. Thomas, R.E., in charge.
Provincial officers.
Messre. H. P. D. Morton, R. P. Ray, N. R. Mazamdar and R. B. Mathur.

Upper Subordinate Service.
Mr. B. B. Shome, from 1st July 1913.
Lower Subordinate Service.
19 Recorders, Surveyors, etc.
it comprises :-
I. An account of the work in the field and recess quarters.
II. A note on the observatories during 1912-13.
III. Tables of results including :-
(a) Preliminary values of the magnetic elements at field and repeat stations.
(b) Diurnal variation and inequality of the magnetic elements at each of the four survey base stations.
An index chart showing the progress of the magnetic survey is appended.

I.--FIELD OPERATIONS AND RECESS WORK IN 1912-13.

1. Work of the field detachments.-The field season opened on October 23rd, 1912, and closed at the end of April 1913.
'Ihe health of the party was on the whole satisfactory, but one Provincial officer was invalided from the field, and at Barrackpore observatory both the observer and recorder had to be relieved owing to severe attacks of malaria, which is always prevalent in the rainy season.

Two field detachments each under a Provincial officer were employed partly on detail survey and revision of the work of the first field season (1901-02) and partly on observations at repeat stations.

The revision work was taken up chiefly because there is some considerable uncertainty as to the correct values to be assigned to the magnetic moments of the field magnets during this first field season, no comparisons of instruments having been made until the beginning of the following season when considerable changes of moment were found in some cases to have meanwhile occurred; there were also changes in the values of P and Q in each instrument which cannot be satisfactorily determined owing to the small number of observations; and finally only one observatory, viz., at Colāba, was working so that the corrections for diurnal variation and disturbance are somewhat uncertain.
2. Field work of the officer in charge. -The officer in charge inspected Barrackpore and Toungoo observatories where oomparisons of instruments were made, visited several repeat, stations and carried out a preliminary magnetic survey of Ceylon.
3. Field work during 1912-13 and total work to date.—During the field setson full sets of magnetic observations were made at the following :-

- -

58 repeat stations,
19 old stations, revised,
42 new stations in Ceylon,
3 new stations in India, 20 detail stations in Central India. The total work of the magnetic survey to date includes1,401 stations of the fundamental survey. 371 detail survey stations.
73 repeat stations.
Under repeat stations are included observations at the old field stations which were marked by pillars in 1910-11; these number 50 and with the original 23 repeat stations make 73 in all or 1 repeat station to 20 stations of the fundamental survey.

It is intended to re-occupy these stations, with the addition of others as may be found desirable, every year or every second year according to the means available.
4. Work during recess.-The computation of the field work and the reduction and tabulation of the results from the base stations for 1912 have been completed.

This year, for the first time, the tabulations are based on the measurements of all available days instead of only five quiet days per month as heretofore.

Good progress has been made with the reduction of the declination data of the survey, upon which one section under
Reduction of the declination data. a provincial officer has been engaged throughout the year.
Corrections for diurnal variation have been applied to all observations up to 1912 ; corrections for disturbance have been also computed for each observation from each of the four survey base stations for the same period. The latter corrections are for the most part small and of the same order of magnitude as the observational error, but the signs often vary so that the total range may be two or three times this amount. It seems unlikely that any simple law can be found to connect the computed disturbances with geographical co-ordinates, at any rate when dealing with one magnetic element only and sucin limited investigation as was warranted by the small magnitude of the computed corrections confirms this view; corrections will be therefore applied as found from the nearest observatory or observatories.

The investigation of the instrumental differences in H. F. has been
Instrumental differences in II. F. practically completed, but before finally accepting the conclusions arrived at, it has been decided to carry out an extended comparison of all the survey instruments using different thermometers with each instrument and interchanging observers; the moment of incrtia of all the magnets will also be carefully redetermined. This work has been unavoidably delayed for several months owing to the chronograph at Dehra Dün being out of order. Further investigation has shown that the viows expressed in the report for 1910-11, regarding possible clanges in the distribution coefficients, requice some modification; in one case
an undoubted change in \mathbf{P} and Q equivalent to a change in HF of 7γ occurred without a concomitant fall in the magnetic moment; this change is shoun by the observations at $22 \cdot 5,30$ and 40 cms . but had previously hecroterilooked, when changes of P and Q were only expected when large falls in m_{0} oocurred, as the change occurred during the last season in which the instrument in question was used.

The instruments of the De Filippi expedition were compared with the Dehra Dūn standards early in September

Comparisons of Pehra Dūn standarils with in-
struments of the De Filippi expedition.
1913. Both sets of instruments were found to agree well in declination and dip, but the results in Horizontal Force were unsatisfactory owing to defects in the De Filippi magnetometer.
5. Programme for 1913-14.-During the ensuing field season field work will be confined to observations at repeat stations for the determination of secular changes and comparisons of instruments at observatories; this work will occupy one detachment for the whole field season, the other for two to three months.

The detail survey will be discontinued for the present and the available strength of the party will be employed on the reduction of the data already accumulated; the detail survey can be subsequently continued if considered desirable.
6. Results published in this report.--Tables showing the approximate values (uncorrected) of the magnetic elements at the field and repeat stations in 1912-13 are appended together with an index chart showing the progress of the magnetic survey to date.

The tabulation of the results from "all availalle clays" at the four survey base stations are published for 1912.

II.-THE OBSERVATORIES IN 1912-13.

A.-Dehra Den Observatory.

1. The observatory remained in charge of magnetic observer Shri Dhar until the beginning of July 1913 when he proceeded on leave, being relieved by Mr. R. P. Ray.

The H. F. and declination magnetographs have worked woll throughout the year; the V. F. magnctograph is still somewhat unsatisfactory; some further adjustment in the relative positions of the knife elge and agate planc seems desirable as this has been found bencficial in the other iustruments.

The two absolute houses were thoroughly repaired during May and June 1:)13 and roofed with ruberoid.
2. Mean values of constants. - The table below gives the mean monthly values of magnetic collimation, the distribution co-efficionts $P_{1.2}$ and $P_{2,3}$ and the observed and accepted values of m_{o} used in the computations for 1912. Included in the table are thic monthly mean valucs of m_{0}, as determined using the chronograph for the vibration observations; the range in tbese values is somewhat larger than was expected but the means are derived from at most observations on two days and experience with the field instruments lias shown that this is insufficient for a satisfactory determination.

Mean values of the constants of the magnetometer No． 17 in 1912.

Moming，	Declimation cometants．	H．F．Constants．						$\begin{gathered} \text { Aocepted } \\ \mathbf{n o c}_{0} \end{gathered}$	Remarie．
		Mean valdes of P＇b．				Mran taluz of mo，			
	Mean magnetic collimatiou．	\mathbf{P}_{1-2}	P_{2-3}	Accepted \mathbf{P}_{1-2}	Accepted \mathbf{P}_{2-9}	By eyc and ear	By chro－ nograph		
January	－9＇： $23^{\prime \prime}$	$7 \cdot 14$	776			893.05	$893 \cdot 35$		
February ．	－9＇： $26^{\prime \prime}$	$7 \cdot 18$	7.68			803.32	893.27		
Marcí	$-9^{\prime}: 22^{\prime \prime}$	$7 \cdot 24$	7.76			892．83	393.27		
April ．	－9＇： $22^{\prime \prime}$	$7 \cdot 21$	7.56			892\％3	．．．		
Msy ．	－9＇： $20^{\prime \prime}$	$7 \cdot 21$	7.71		号	892＇46	\ldots		
June ．	－9＇： $21^{\prime \prime}$	$7 \cdot 15$	7.59	它	它	892．48	\cdots	年	
July ．．	－ $9^{\prime}: 24^{\prime \prime}$	7.39	$7 \cdot 66$	－	$\stackrel{\square}{+}$	89298	$893 \cdot 18$	$\stackrel{3}{3}$	
August	－－9＇： $24^{\prime \prime}$	7.45	7.92	$\stackrel{-}{-}$	$\stackrel{\sim}{i}$	892.90	893．13	N	
September＇	－9＇： $28^{\prime \prime}$	7.24	$7 \cdot 63$			892．76	$803 \cdot 14$		
October	－9＇： $25^{\prime \prime}$	7.25	$7 \cdot 64$			892．98	893.26		
November ．	－9＇： $20^{\prime \prime}$	7.28	757			892．93	843．30		
December ．	－9＇： $24^{\prime \prime}$	7.22	785			893.08	893．35		

3．Mean Base line values．－The table below gives the monthly mean values of the declination and H．F．base lines actually used to obtain the values of \mathbf{H} ．F．，etc．，in the tables attached to this report．

Base line value of mognetographs in 1912.

4．The mean scale values for 1912 for an ordinate of $1-25$ inch were as follows ：－

H．F． $4 \cdot 12 \gamma$ to May．

$4 \cdot 52 \gamma$ from June 10th to October 25th．
$4 \cdot 47 \gamma$ from October 25th．
D． 1.03 ．
V．F． 4.20 to 6.51 ．

A new quartz fibre was mounted in the H. F. magnetograph on June 10th, and the torsion head was turned on October 25th.

The mean temperature for the year was $27^{\circ} .0 \mathrm{C}$ with marimum and minimum values of $27^{\circ} .2 \mathrm{C}$ and $26^{\circ}, 9 \mathrm{C}$. The temperature of reduction is $27^{\circ} . \mathrm{C}$.
5. Mean monthly values and secular change, 1911-12.—The following table gives the mean monthly values of the magnetic elements for 1911-12 and the secular change during that period.

Secular changes at Dehrra Dūn in 1911-12.

1. Magnetic observer K. N. Mukerjee remained in charge until early in October 1913 when he proceeded on sick leave. The observatory is extremely unhealthy during the rainy season when malaria of a severe type is prevalent; during this year the whole of the observatory staff were in turn incapacitated from duty.

The declination and H. F. magnetographs worked well during the year while the vertical force instrument was much more satisfactory, the changes in base line which are inevitable in this class of instrument being much more uniform.
2. Mean val:ies of constants.-The following table gives the monthly mean valucs of magnctic collimation, the distribution co-efficients of P_{1-2} and P_{2-9} and the moment m_{\circ} of the observatory magnetometer in 1912 .

Mean of the Constants of the magnelometer No． 20 in 1912.

Morinis．	Dbolinatiog Cotetante．	h．F．CONSTAN TE．						Revince．	
	Mean magnetic collimation．	Mram falubi of P＇b．				Mcanvalues of ［1）	$\begin{gathered} \text { Accepted } \\ \mathbf{m}_{\mathbf{o}} \end{gathered}$		
		$\mathbf{P}_{1.2}$	$\mathbf{P}_{\text {2－3．}}$	Aocepted value of $\mathrm{P}_{1.2}$	Accepted value of $\mathbf{P}_{2,3}$				
January	－8＇： $0^{\prime \prime}$	6.97	$7 \cdot 57$			939•87			
February	－7：51	6.98	$7 \cdot 47$			$939 \cdot 57$			
March ．	－7： 47	$6 \cdot 84$	7.50			939.63			
April	－7： 47	6.80	7.37			939．80			
May	－7： 45	$6 \cdot 86$	7.56			$\bigcirc 30.82$			
June	－7： 46	6.89	7.53	号	\％	940．07	毼		
July	－7：43	6.86	7.50	$\stackrel{\square}{8}$	b	939.59	点		
August	－7： 47	6.95	7.28	잉	－	940．01	$\stackrel{1}{8}$		
Scptenber	－7：50	6.92	$7 \cdot 42$			939.90			
October	－7： 45	6.91	$7 \cdot 22$			93979			
Novernber	－7： 47	7.01	7.21			940•27			
December	－7：53	$6 \cdot 89$	736			93977			

3．Mean values of Base Lines．－The table below gives the mean monthly base lines of the declination and H．F．instruments used in the computations．

Base line value of the Magnetographs in 1912.

4．Mean scale value and temperature range．－The mean scale values for the year for an ordinate of $1 / 25$ inch were ：－H．F．Ji 86γ V．F． $4 \cdot 64 y$ and D． $\mathrm{l} \cdot 03$ minutes．The mean temperature for the year was $31^{\circ} \cdot 60$ wiih maximum and minimum monthly values of $32^{\circ} 8 \mathrm{C}$ and $30^{\circ} \cdot 5 \mathrm{C}$ ：the temperature of re－ duction is $31^{\circ} \mathrm{C}$ ．
5. Mean monthly values and secular change.-The following table gives tho mean monthly values of the magnetic elements for 1911-12 and the segular change during that period.

Secular changes at Barrackpore in 1911-12.

Mouri	Homizomtal Fober 37000 C. G, $8+$.			$\begin{aligned} & \text { Drolimation } \\ & \text { E. } 0^{\circ}+\text {. } \end{aligned}$			$\underset{N \cdot}{\mathrm{Nip}} \cdot \mathrm{s0}^{\circ}+$		Vhbitonl Fobob -22000 C. G.s.+		
	1011.	1012.	Secalar oliange	1911.	1013	Secular chango.	1011. 1012,	Seoular chaugo.	1011.	1012.	Bocular clange.
	$\boldsymbol{\gamma}$	$\boldsymbol{\gamma}$	γ	,	,	,	, ,		$\boldsymbol{\gamma}$	$\boldsymbol{\gamma}$	$\boldsymbol{\gamma}$
January	321	354	+ 33	52.3	$46 \cdot 8$	-5.5	43.1 $49 \cdot 0$	+ $5 \cdot 9$	175	283	+ 108
Febramat	327	361	34	52.0	$46 \cdot 4$	$5 \cdot 6$	43.5 49.1	+5.6	185	287	102
Sarch .	339	365	26	51.7	$45 \cdot 7$	6.0	44.0	$5 \cdot 0$	199	289	090
April	336	369	33	51.2	$45 \cdot 1$	$6 \cdot 1$	$44.5 \quad 49.9$	$5 \cdot 4$	205	304	099
M3)	335	973	98	$50 \cdot 7$	44.7	6.0	44.4 $\quad \mathbf{6 0 \cdot 4}$	6.0	203	315	112
Jane	842	376	34	50.0	$44 \cdot 1$	$5 \cdot 9$	$45 \cdot 1 \quad 50 \cdot 3$	$6 \cdot 2$	217	314	097
J aly	337	373	41	497	$43 \cdot 6$	$6 \cdot 1$	$45.5 \quad 50 \cdot 9$	5.4	220	325	105
August.	336	369	33	$49 \cdot 4$	$43 \cdot 4$	$6 \cdot 0$	46.2-61.1	$4 \cdot 9$	280	322	092
September	334	372	38	$48 \cdot 9$	$42 \cdot 6$	$6 \cdot 3$	$47.0 \quad 51.7$	$4 \cdot 7$	240	333	93
October	335	371	36	48.2	$42 \cdot 4$	$5 \cdot 8$	47.4 $62 \cdot 1$	$4 \cdot 7$	247	338	91
November	346	370	24	$47 \cdot 8$	41.6	6.2	$47 \cdot 4 \quad 52.2$	$4 \cdot 8$	254	339	85
December	351	37.	23	47.3	41.2	6.1	$47.6 \quad 52.5$	$4 \cdot 9$	260	346	86
Means	337	369	+ 32	$49 \cdot 9$	44.0	-5.9	$45.5 \quad 50 \cdot 7$	+ $5 \cdot 2$	220	316	+96

> C.-Toungoo Observatohy.

1. Surveyor K. K. Dutta held charge of the observatory throughout the sear.

The H. F. and declination magnetographs have worked well throughout the year; the readjustment of the V. F. instrument referred to in last year's report has also proved satisfactory.
2. Mean values of declination and H. F. constants.-The table below gives the mean monthly observed values ef magnetic collimation, the distribution constants $P_{1 \cdot 2}$ and $P_{2,3}$ and the magnetic moment m.

The change of collimation in December is due to the replacement of one of the aluminium cells of the collimator magnet ; the lens of the old cell bad become almost opaque owing to decomposition of the cement joining the two portions of the lens and it is probably to this cause that the previons fluctuations of the value of collimation are to be ascribed.

The new cell necessitated a redetermination of the moment of inertia; the new value agreed with that deduced from comparisons with one of the field instruncents before and after the change

Mean values of the constants of the Magnetometer No. 19 in 1912.

3. Mean Base Line values.-The following table gives the mean monthly values of the observed and accepted values of the declination and H. Fs magnetographs.

The observed values of II. F. base line require a correction of -19γ to reduce them to magnet 19 which was in use in the earlier years of the observatory.

The remaining differences between the observed and accepted values of the II. F. base lines are undoubtedly duo to indifferent observations; it is probable that the vibration observations are chiefly at fault and that the observed mean values of m_{0} are burdened with variable " personal errors."

The accepted Base lines lave been derived from comparisons with No. 10 in December 1912 and 1913 and for the present the change during that period has been accepted as uniform.

Base line values of the magnctographs in 1912.

Base line values of the magnetogrophs in 1912-continued.

Moximi.	Declination.		Hobizontal foroe.		
	Accepted				
June	- '		'38465	-38447	
Joly .			-38464	-38445	
August .			$\cdot 38.468$	-38442	
Sepiember	-0:31.6		-38472	-38440	
October			-38465	-38437	
November			-38478	-38435	
Deoember			-38475	-38132	

4. Mean scale values and temperature range.-The mean scale values throughout the year for an ordinate of 1-25 inches were:-

$$
\begin{array}{lc}
\text { H. F. } & \quad 5.43 \gamma \\
\text { V. F. } & 4.01 \text { to } 5 \cdot 70 \gamma \\
\text { Declination } & 1.04 \text { minutes. }
\end{array}
$$

The mean temperature for the year was $89^{\circ} 2 \mathrm{~F}$. with maximum and minimum monthly values of $89^{\circ} .5$ and $88^{\circ} \cdot 9$; the temperature of reduction is $89^{\circ} \mathrm{F}$.
5. Secular change 1911-12.-The annexed table gives the mean monthly values of the magnetic elements for 1911-12 and the secular change during that period.

Secular changes at Toungoo in 1911-12.

\bullet

D.-Kodaikānal Observatory.

1. S. S. Ramaswami Iyengar was in charge throughout the year.

The magnetographs have given good results during the year.
Thanks are due to the Director, Solar Physics Observatory, for his cordial assistance in all matters connected with the magnetic work.
2. H. F. and declination constants. -The following table gives the mean monthly values of magnetic collimation, the distribution constants $\mathrm{P}_{1 \cdot 2}$ and $\mathrm{P}_{2 \cdot 3}$ and the accepted values of the magnetic moment m_{0}.

The change in m_{o} after the 29th February altered the values of the collimation and the distribution constants.

Mean values of the Constants of the Magnetometer No. 16 in 1912.

3. H. F. and Declination Base line values.-.'The following table gives the mean monthly values of the acceptod base lines used in computing the monthly values.

Both H. F. and Declination magnetographs were adjusted on $28 t \mathrm{l}$ February 1912.

Base line values of the magnetoyraphs in 1912.

4. The mean scale values for 1912 for an ordinate of 1.25 inches are:-

H. F. $\quad 6 \cdot 14 \gamma$	
	6.01γ after readjustment on 28th February 1912.
V. F.	4.97 to $5 \cdot 3+\gamma$
Declination	1.03 minutes.

The mean temperature of the H.F. and V.F. magnetographs for the year was $18^{\circ} \cdot 2 \mathrm{C}$ with maximum and minimum monthly values of $18^{\circ} \cdot 7 \mathrm{C}$ and $17^{\circ} 7 \mathrm{C}$: the temperature of reduction is $19^{\circ} \mathrm{C}$.
5. Secular change 1911-12.-The table below gives the monthly mean values of the magnetic elements for 1911-12 and the secular change during that period.

Secular changes at Koduikānal in 1911-191.2.

Morime.	Hobizontal Force ${ }^{-37006}$ C. G. S. +			Dgolimation W. $10^{\circ}+$			$\begin{gathered} \text { DIP. } \\ \text { N. } 3^{\mathbf{o}} \end{gathered}$			Yebtical Fobob -02000 C. G. S. +		
	1011.	1012.	Sccular cbadge.	1011.	1012.	Secular chenge.	1011.	1012.	Secular change.	1911.	1912.	Secalar change.
	γ	${ }^{7}$	$\stackrel{7}{7}$				48			$\stackrel{\gamma}{7}$	${ }_{584}^{7}$	$\stackrel{y}{+85}$
Januery	504	531	+27	$58 \cdot 1$	63.2	+51	$48 \cdot 8$	563	+ $7 \cdot 5$	499		
Febramey	498	510	42	57.9	63.8	$5 \cdot 3$	49.6	56.7	$7 \cdot 1$	508	588	80
March	511	535	24	58.2	64.5	63	50.0	56.9	6.9	613	591	78
April	508	532	24	58.8	64.8	6.0	50.7	57.8	$7 \cdot 1$	520	600	80
Mey	507	529	22	51.4	65.1	57	51.0	58.5	7.5	524	607	83
Jane	512	639	27	602	65.7	$5 \cdot 5$	$52 \cdot 1$	593	$7 \cdot 3$	535	617	82
July	515	544	29	$60 \cdot 2$	$66 \cdot 1$	$5 \cdot 0$	52.2	$59 \cdot 9$	7.7	538	624	86
Auguet	510	54.	25	60.7	663	$5 \cdot 6$	52.7	$50 \cdot 6$	6.9	514	621	77
September	528	551	23	61.5	66.9	54	52.9	60\%2	$7 \cdot 3$	517	628	81
Octuber	528	555	29	62.0	67.3	$5 \cdot 3$	54.2	60.7	6.5	560	634	74
November	530	559	29	$62 \cdot 5$	67.9	$5 \cdot 1$	51.8	61.7	6.9	567	645	78
December	527	558	31	62.9	68.4	5.5	55.2	62.0	6.8	571	649	78
Meane	615	543	$+28$	60.2	$65 \cdot 8$	+ 5.6	52.0	59.1	+711	536	816	$+80$

III.-TABLISS OF RESULTS.

Am-Mean values of the magnetic elements at the observatories for 1912.
B. Classification of curves and dates of magnetic disturbances in 1912.
C. Preliminary values of the magnetic elements at field and repeat stations in 1912-13.
D. Tables of results at Dehra Dün.
E. ", " Barrackpore.
F. " " 'Toungoo.
G. " , Kodaikānal.

For each observatory the following tables are given :-
(a) Hourly means (corrected for temperature) of Declination, H. F., V. F. and Dip from all available days.
(b) Diurnal inequality deduced from (a).
H. Index map showing the progress of the magnetic survey io date.

A.

Mcan values of the magnetic elements at observatories in 1912.

Observitory.	Latitude and Loogitude.	Dip.	Declinution.	H. F.	v. r.
	,		- ,	C. G. S.	C. G. S.
Dehra Dūn.	$\left\{\begin{array}{rrrr}30 & 19 & 19 & \mathrm{~N} \\ 78 & 3 & 19 & \mathrm{E}\end{array}\right\}$	N 448.9	E 2250	33218	-3244
Barrackpore	$\left\{\begin{array}{llll}22 & 46 & 29 & \mathrm{~N} \\ 88 & 21 & 39 & \mathrm{E}\end{array}\right\}$	N $3050 \cdot 7$	E $0 \pm \pm 0$	-37369	22316
Toungoo	$\left\{\begin{array}{rrrr}16 & 55 & 45 & N \\ 96 & 27 & 3 & \mathrm{E}\end{array}\right\}$	N 23331	E 0 [334	-38889	$\cdot 1654.8$
Kodaikānal	$\left\{\begin{array}{llll}10 & 13 & 50 & \mathrm{~N} \\ 77 & 27 & 40 & \mathrm{E}\end{array}\right\}$		W 175	$\bullet 47543$.02616

C.-Abstract showing appro.ximate magnetic values at stations observect at by No. 18 Party during season 1912-13.

Firid Stations.

Abstract shonoing approximate magnetic values al stations obsorved at by No． 18 Parby during season 1912－13－continued．
Field Stations－concluded．

Oid Stations re－observed．

Detall Surviy Stations．

$3521)$	Nandgion	． 20.4180	$\begin{array}{llll}77 & 49 & 50\end{array}$	$\begin{array}{lll}\text { N } & 26 & 44\end{array}$	E． 024	0：1711	
3531）	Ner（Parampant）	－$\because \begin{array}{llll}0 & 29 & 10\end{array}$	$77 \quad 5180$	，26 11	， 0 38	． 3634	
3540	Ycotmsl	－ $20 \quad 23 \quad 20$	$78 \quad 8 \quad 60$	， $25 \quad 50$	， 928	＇3703	思。
3551	I codmolia	－ $20 \begin{array}{lll}20 & 13 & 0\end{array}$	$\begin{array}{llll}78 & 17 & 50\end{array}$	， $25 \quad 50$	， 15	$\cdot 3687$	最品
358 D	Mohoda	－ 211310	74 2820	，26 1	， 045	$\cdot 3726$	号号
3515	Thelgaon	． $2021 \quad 30$	78833030	，20 20	， 0 33	3723	豆号
a68D	Wadki	． 2011010	$\begin{array}{lll}78 & 48 & 50\end{array}$	＂ 205	＂ 025	$\cdot 3669$	
259D	Mērdi	$20 \quad 11 \quad 30$	$78 \quad 50 \quad 40$	$\cdots 264$	＂ $0 \quad 10$	－3728	

slstract shoving approximate magnetic values at stutions observed at ly No. 18 Parly during season 1912-13-continued.

Detail Survey Stations-coneluded.

Serinal	Name of Station.	Latitude.	Longitude.	Dip.	Declinatlou,	Horizontal Force.	Rimatis,
		- . \quad	- "	- ,		C. G. S.	
360D	Wūn	2020	$\begin{array}{lll}78 & 57 & 20\end{array}$	N. 2533	E. 08	$0 \cdot 3731$	
361 D	Punwat	$\begin{array}{lll}19 & 57 & 20\end{array}$	7930	" 257	, 011	-3731	,
362 D	Kājar	$\begin{array}{lll}19 & 54 & 0\end{array}$	$78 \quad 54 \quad 10$, 25 17	, 0 9	-3697	O
363D	Wıdhona	$\begin{array}{lll}19 & 58 & 30\end{array}$	$\begin{array}{lll}78 & 45 & 40\end{array}$, $25 \quad 32$	", 013	-3754	0
364D	Pündharkawada	$\begin{array}{lll}20 & 1 & 30\end{array}$	$\begin{array}{lll}78 & 33 & 0\end{array}$, 266	, 0 li	. 3725	-
365D	Bori (Patan)	$\begin{array}{lll}19 & 51 & 50\end{array}$	$78 \quad 34 \quad 20$, 2542	W. $0 \quad 21$	-3665	曾
3661)	Snorgaon	$\begin{array}{lll}19 & 54 & 50\end{array}$	$\begin{array}{lll}78 & 22 & 20\end{array}$, 2622	E. 07	-3688	O
367D	Sāyatkharda.	20130	$\begin{array}{llll}78 & 16 & 50\end{array}$, 2547	, $0 \quad 20$	$\cdot 3748$	\%
368D	Kurhàd	$20 \quad 8 \quad 0$	$\begin{array}{lll}78 & 10 & 40\end{array}$, 2612	" 020	-9724	-
369D	Mãhāgnon (Kasba)	$\begin{array}{lll}20 & 13 & 10\end{array}$	$77 \quad 5420$, 268	, 041	-3722	田
3701	L̄̄diched	$\begin{array}{lll}20 & 20 & 40\end{array}$	$77 \quad 5440$, $20 \quad 32$	", 0 33	$\cdot 3682$	
371D	Dārwhà	$\begin{array}{lll}20 & 18 & 30\end{array}$	$\begin{array}{lll}77 & 46 & 0\end{array}$, 2558	, 08	-3697	

Repeat Stations.

Abstract showing approximate maguctic values at stations observed at by No． 18 Party during season 1912－13－concluded．

Repeat Stations－concluded．

	Nave of Station．	Latitade．	Longilude．	Dip．	Declination．	$\begin{aligned} & \text { Hurizental } \\ & \text { Force. } \end{aligned}$	$\mathrm{R}_{\text {gradige，}}$
		－＇＂	－，＂	－，		C．G．S．	
105	Sachīn	2140	$\begin{array}{llll}72 & 52 & 40\end{array}$	$27 \quad 69$	E．$\quad 0 \quad 16$	$\cdot 3655$	
$12 \pm$	Bikaner	$28 \quad 0 \quad 40$	$73 \quad 1850$	4032	， 1057	3385	
130	Ajmer	$\begin{array}{lll}26 & 27 & 30\end{array}$	$75 \quad 38 \quad 30$	3762	＂ 148	3461	
134	Mīrpur Kbās	$\begin{array}{llll}25 & 31 & 40\end{array}$	$69 \quad 0 \quad 40$	9610	， 151	－344	
139	Viramgām	$\begin{array}{llll}23 & 8 & 10\end{array}$	$72 \quad 3.30$	3149	＂， $0 \quad 59$	3566	
17）	Dhond	$\begin{array}{lll}18 & 28 & 0\end{array}$	$\begin{array}{llll}74 & 35 & 10\end{array}$	2240	，， 018	3715	
176	Hotwi	$\begin{array}{llll}17 & 33 & 40\end{array}$	$76 \quad 0 \quad 20$	$30 \quad 48$	， 0 3	－3757	
181	Cruntakal	$\begin{array}{llll}15 & 10 & 20\end{array}$	$77 \quad 2240$	1542	W． 036	38：77	
187	Perambūr	$\begin{array}{llll}13 & 6 & 4\end{array}$	$80 \quad 150$	$10 \quad 47$	1） 056	3844	
207	Birūr	$\begin{array}{lll}13 & 35 & 60\end{array}$	75	$11 \quad 69$	1） $0 \quad 49$	3805	
216	Mirāj ．	$\begin{array}{lll}16 & 49 & 10\end{array}$	$\begin{array}{llll}74 & 38 & 10\end{array}$	1950	， 013	3768	
923	Munmed	$\begin{array}{llll}20 & 14 & 10\end{array}$	$\begin{array}{lll}74 & 28 & 20\end{array}$	26 16	E． 12	3648	
932	Delhi	$\begin{array}{llll}28 & 40 & 20\end{array}$	$77 \quad 14 \quad 20$	4139	1， 153	3396	b
883	Sirsa	$\begin{array}{llll}29 & 39 & 10\end{array}$	$\begin{array}{lll}75 & 2 & 40\end{array}$	4254	＂ 229	－3334	点
328 （a）	Tinnevelly	8 44 0	$\begin{array}{llll}77 & 42 & 30\end{array}$	15	iv． 1848	－3797	\％
337	Tanjore	$\begin{array}{llll}10 & 46 & 40\end{array}$	$\begin{array}{llll}79 & 8 & 20\end{array}$	458	， 133	－3827	品
375	Parbhani	$\begin{array}{lll}19 & 15 & 20\end{array}$	$\begin{array}{llll}76 & 40 & 50\end{array}$	$25 \quad 3$	E．$\quad 0 \quad 34$	3714	8
384	Bezwãda	$\begin{array}{lll}16 & 31 & 0\end{array}$	80036	21 －6	W． 0 2 ${ }^{5}$	3826	\％
483	Mānikpur	$\begin{array}{llll}25 & 3 & 10\end{array}$	$81 \quad 5 \quad 20$	$35 \quad 23$	E． 15	3593	哥
499	Mosghyr	$\begin{array}{llll}25 & 23 & 10\end{array}$	$\begin{array}{llll}86 & 27 & 30\end{array}$	$35 \quad 66$	＂ 0 55	3634	$\stackrel{\underline{\mathrm{x}}}{\underset{\mathrm{I}}{2}}$
300	Sini	$\begin{array}{llll}22 & 47 & 0\end{array}$	$85 \quad 5650$	$30 \quad 49$	＂ 038	＇3745	
518	Katārniān Gbât	$\begin{array}{llll}28 & 19 & \text { b0 }\end{array}$	81780	411	， 149	3451	
530	Bettiab	$\begin{array}{llll}26 & 48 & 60\end{array}$	$8 \pm \begin{array}{lll}81 & 30\end{array}$	3831	－ 122	35.4	
5.44	Bīran	$25 \quad 5 \quad 30$	$76 \quad 30 \quad 30$	$35 \quad 45$	， 114	3524	
545	Bina	$24 \quad 10 \quad 50$	$78 \quad 110$	3332	， 13	33572	
557	I Ddore	$\begin{array}{lll}22 & 42 & 10\end{array}$	$\begin{array}{llll}75 & 52 & 40\end{array}$	$31 \quad 12$	， $0 \quad 38$	3680	
673	Cawopore	$\begin{array}{lll}26 & 27 & 0\end{array}$	$\begin{array}{llll}80 & 21 & 0\end{array}$	3760	， 127	3534	
599	Käthgodàm	$\begin{array}{lll}29 & 15 & 20\end{array}$	$\begin{array}{llll}79 & 32 & 60\end{array}$	4238	， 25	3379	
710	Cumbam	$15 \quad 36 \quad 50$	79 （6） 41	1892	W． $0 \quad 59$	3827	
748	Chenda	$\begin{array}{lll}19 & 57 & 50\end{array}$	$\begin{array}{lll}79 & 17 & 40\end{array}$	$25 \quad 29$	E． $\begin{array}{lll}0 & 17\end{array}$	3746	
765	Raipur	$\begin{array}{lll}21 & 15 & 50\end{array}$	$81 \quad 38 \quad 21$	$28 \quad 22$	．， 024	$\cdot 3724$	
779	Amraoti	$20 \quad 56 \quad 30$	$77 \quad 45 \quad 60$	$27 \quad 53$	＂ 07	$\cdot 3653$	
871	Lâkehăm	$23 \quad 15 \quad 40$	$\begin{array}{llll}91 & 7 & 20\end{array}$	$31 \quad 42$	，． 0 36	3750	
961	Mandalay（b）	$22 \quad 0 \quad 10$	$\begin{array}{llll}96 & 6 & 0\end{array}$	2） 21	．， 018	38\％1	
1339	Harmer	$\begin{array}{llll}25 & 44 & 40\end{array}$	$\begin{array}{lll}71 & 26 & 40\end{array}$	$30 \quad 47$	， 146	＇3436	

Nots．－The bbove values of Dip，Deolination nad Horizontal Force are anourreoted for seonlar change，diaras l Fariation，instrnmental differences，etc．，and are to be considered preliminary valnes only
All Longitudes are referable to that of Madras Obser ${ }^{\circ}$ ，

All Longitodes are referable to that of Madras Observatory tairen at the value $80^{\circ} 14{ }^{\prime}$ ，54＂East from Greonfial．
D.-Table of results at Dehra $D_{\bar{u} n}$.

Hours.	Mid.	1	2	3	${ }^{4}$	5	6	7	${ }^{8}$	+	${ }^{10}$	11	Noon.	13	14	15	16	17	${ }^{18}$	${ }^{19}$	${ }^{2} 0$	21	! 22	23	Mid.	Means.
E. $2^{\circ}+$ Winter.																										
Months.																										
Janara	. 27.3	27.2	271	27.0	270	26.8	26.8	27.0	27.6	27.8	27.3	26.2	$25 \cdot 9$	26.4	27.2	28.0	28.1	$22 \cdot 6$	$27 \cdot 5$	27.6	$27 \cdot 4$	27.4	27.4	27.3	27.3	27.3
Febraary	$27 \cdot 1$	27.1	$27 \cdot 1$	27.1	270	27.6	27.0	27.0	27.3	27.4	\| 27.1	$26 \cdot 3$	25.6	$25 \cdot 4$	$26 \cdot 1$	27.0	27.5	27.5	$27-2$	25.2	$27 \cdot 1$	27.1	$27 \cdot 1$	27.1	27.1	26.9
March	26.9	26.9	${ }^{96} \cdot 8$	\% 6	26.6	26.6	$26 \cdot 6$	27.1	28.3	29.1	\| 28.9	27.7	26.1	24.9	24.8	$25 \cdot 6$	26.5	26.9	$26 \cdot 8$	26.6	$26 \cdot 6$	267	26.8	$26 \cdot 8$	$26 \cdot 9$	$26 \cdot 8$
October	25:1	20.1	$25 \cdot 2$	25.2	25.2	24.8	24.8	555	28.5	$26 \cdot 3$	$25 \cdot 9$	$2 \cdot 19$	23.7	23.4	24.0	$24 \cdot 9$	25.3	$25 \cdot 1$	25.0	25.0	$25 \cdot 1$	25.2	25.2	$25 \cdot 3$	23.4	25.1
November	25\%	${ }^{55} 5$	25.1	25.3	$23 \cdot 1$	2 ± 9	$24 \cdot 9$	25.0	25.1	25.5	22.2	246	24.4	25.0	25.1	$20^{2} 5$	25.5	$25^{\circ} \mathrm{s}$	$20^{\circ} 5$	25.5	25.4	23.5	25.5	$25 \cdot 5$	$25{ }^{\circ}$	$20 \cdot 3$
Deeember	- 24.7	246	24.5	214	242.	$21 \cdot 1$	240	23.8	23.8	21:3	2.16	$21 \cdot 3$	24.1	24.1	24.7	216	2.6	216	246	2.6	24.6	$2 \cdot 6$	2	246	46	24.1
Means	$26 \cdot 2$	$26 \cdot 1$	$26 \cdot 0$	26.0	$25 \cdot 9$	25.7	$25 \cdot 7$	25.9	26.5	28.7	26.5	$25 \cdot 7$	$22^{\circ} 0$	24.9	25.4	${ }^{20.9}$	263	26•2	26.1	26.1	$26 \cdot 0$	26.1	26.1	$26 \cdot 1$	$26 \cdot 1$	26°

E. $2^{\circ}+$ Sammer.																									
4 pril	26.8	$26 \cdot 9$	$26 \cdot 9$	$\begin{array}{ll} & 96 \cdot 9 \quad 26.8\end{array}$	268	27.3	$28 \cdot 3$	29.2	$29 \cdot 1$	27.7	26.0	24.7	$24 \cdot 1$	24.5	25.2	$26 \cdot 1$	26.5	26.5	26.3	26.3	26.4	$26 \cdot 6$	${ }^{26} 68$	26.8	$26 \cdot 6$
May	26.7	26.8	26.8	$\begin{array}{ll}26.8 & 26.8\end{array}$	27.0	28.0	28.9	29.2	28.1	$26 \cdot 6$	21.8	$23 \cdot 6$	$23 \cdot 4$	24.2	$25 \cdot 1$	25.9	${ }^{26} 5$	$26 \cdot 6$	${ }^{-6}{ }^{2}$	$26 \cdot 1$	26.3	26.4	26°	23.7	$26 \cdot 4$
June	$25 \cdot 9$	$26 \cdot 1$	26.1	$26 \cdot 2 \quad 26 \cdot 1$	26.3	27.4	28.3	28.5	27%	$26 \cdot 0$	24.5	$23 \cdot 5$	$23 \cdot 3$	23.1	23.8	24.4	25.0	25.5	$25 \cdot 1$	25.2	$25 \cdot 3$	$25 \cdot 4$	$25 \cdot 6$	25.8	$25 \cdot 6$
July	$25 \cdot 9$	$26 \cdot 1$	$26 \cdot 1$	26.2 26.2	$26 \cdot 4$	27.5	$28 \cdot 1$	$28 \cdot 4$	27.7	26.3	246	${ }^{23} 6$	$23 \cdot 3$	23.3	23.8	24.4	25.0	25.5	$25 \cdot 4$	$25 \cdot 3$	$25 \cdot 4$	25.5	25.8	25.9	25%
August	$25 \cdot 6$	25.7	25.7	25.785	$26 \cdot 1$	26.9	27.6	27.7	96.9	25^{6}	$2 \cdot 2$	$23 \cdot 1$	23.0	23.4	$21 \cdot 2$	25.0	25.5	25.5	25\%	25.2	25.2	$25 \cdot 3$	$25 \cdot 4$	95.6	25^{4}
Septenber	$25 \cdot 6$	25.7	25.6	$\begin{array}{ll}25 \cdot 9 & 25 \cdot 8\end{array}$	$25 \cdot 9$	$26 \cdot 3$	$27 \cdot 3$	27.7	$26 \cdot 9$	$25 \cdot 4$	23.8	228	$22 \cdot 7$	$23 \cdot 3$	243	25.2	$25^{\circ} 6$	25	25.2	15.2	25.3.	$25 \cdot 4$	25.5	20.5	25.3
Means	$26 \cdot 1$	26.2	26.2	26.3 26.3	26*4	27.2	28.1	28.5	27.8	263	24.7	23.6	$23 \cdot 3$	23.7	24.4	25.2	237	$25 \cdot 8$	$20^{2.6}$	$25.6{ }^{\circ}$	${ }^{\circ} \cdot 7$	$25 \cdot 8$	26.0	$26^{6} 1$	9\%9

Diurnal Inequality of the Deelination at Dehra Dū̀n as deduced from the preceding Table.

\#оar.	mid.	1	2	3	4	5	6	7	8	9	10	11	Noon.	13	14	15	16	17	18	19	20	21	22	23	Mid.
Winter.																									
Months.		,										,					-			,	,	,	,	,	,
Jamaary .	+0.1	0	-0.1	-0.2	-0.1	-0.4	-0.4	-0.2	$+0 \cdot 1$	+0.6	+ 0.1	-10	$-1 \cdot 3$	-0.8	0	+0.8	+0.9	+0.4	$+0.3$	+0.4	$+0.2$	+0\%	+0'2	+0.1	+0.1
Febraary	$+0.2$	+0.2	+0.2	+0.2	+0.1	+0.1	+0.1	+0.1	+0.4	+ 0.5	+02	-0.6	-13	-1.5	-0.8	+0.1	+0.6	+0.6	+0.3	+0.3	+0.2	+0.2	+0.2	+02	+0.2
Marob	+0.1	+0.1	0	0	-0.2	-0.2	-0 0	+0.3	+1.5	+2.3	$+2 \cdot 1$	$+0 \cdot 9$	-0.7	-19	-2.0	-1.2	-0.3	+0.1	0	-0.2	-0.2	-0.1	0	0	+0.1
Ootober	+0.3	+0.3	$+0.1$	+0.1	+0.1	-0.3	-0.3	$+0.4$	+1.4	$+1.2$	+08	-0.9	-1.4	-17	$-1 \cdot 1$	-0.2	+0.2	0	$-{ }^{-1}$	-0.1	0	+0.1	+0.1	+02	+0.3
November	+0.2	$+0.2$	+0.1	0	-0.2	-0.4	-0.4	-0.3	+0.1	+0.2	-1	-0.7	-0.9	-0.3	+ 0.1	+0.2	+0.2	+02	+0.2	+0.2	+0.1	+0.2	+0.2	+ 0.2	+0.2
December	+0.3	+0.2	+01	$1 ;$	-0.2	-0.3	-0\%	-0.6	-0.6	-0.1	$+0.2$	$-0 \cdot i$	-0.3	0	+0\%	+0.2	+0.2	+02	$+0 \cdot 2$	+02	+0.2	+0.2	+0.2	$+0 \cdot 2$	+0.2
,	\because	\cdots)	11	01	-03	-03		$+105$	+07	+0.5	-0.3	-1.0	-1.1	-0.6	-0.1	+0.3	+0.2	+0.1	+0.1	0	$+0 \cdot 1$	$+0 \cdot 1$	+0.1	+0.1
Sammer.																									
April	+0.2	+0.3	+0.3	+0.3	$+0.2$	+0.2	+0.7	+17	+2.6	+2\%	+1.1	-0.6	-1.9	-2	-2	-1.4	-0.5	-0.1	-0.1	-0.3	-0.3	-0.2	0	+0.2	+0.2
May	$1+0.3$	+0.4	+0.4	+0.4	+0\%	+0.6	+1.6	+2.5	+28	+2.0	+0.2	-1.6	-2.8	-3.0	-2.2	-13	-0.5	+0.1	+0.2	-0.2	-0.3	-0.1	0	+0.2	+03
June	+ $0 \cdot 3$	+0.5	+0.5	+0.6	+0.5	$+0.7$	+1.8	+2.7	$+2 \cdot 9$	+2•1	$+0 \cdot 4$	-1.1	- -2.1	-2.3	$-2 \cdot 2$	-18	-1.2	-0.6	-0.1	-0.2	-0.4	-0.3	-0.2	0	+0.2
July	+0.3	+0.4	+0.4	+0.5	+0.5	$+0.7$	+1.8	+2.7	+27	+20	+0.6	-1.1	-2.1	-2.4	-2.4	-19	$-1 \cdot 3$	-0.7	-02	$-0 \cdot 3$	-0.4	-0.3	: -1.2	+0.1	+0.2
August	- $+0 \cdot 2$	+0.3	+0.3	+0.3	+0.4	+0.7	+1.5	$+2 \cdot 2$	+23	+1.5	+0.2	-1.2	$-2 \cdot 0$	-2.4	-20	-1.2	-0.4	+0.1	+0.1	-0.2	-0.2	-0.2	-0.1	0	+0.2
Eeptember	- +0.3	+0.4	+0.3	$+0.6$	$+0.5$	$+0.6$	+1.0	+2.0	+24	+1.6	+0.1	-15	-2.5	-2.6	-2.0	-1.0	-0.1	+0.3	+0.1	-0.1	-0.1	0	$+101$	+0.2	$+0.2$
Me:ans	+ +02	103	+03	$+0.1$	+0. 4	+0.5	$+1 \cdot 3$	+2.2	+2.8	$+1.9$	+04	-1.2	$-2 \cdot 3$	-2.6	-9.2	-1.5	-0.7	-0.2	-0.1	-0.3	-0.3	-0.2	-0.1	$+0 \cdot n$	+0.2

[^7]Winter.

Diurnal Inequality of the Horizontal Force at Dehra Dün as deluced from the preceding Table．

Hourt．	mia．	1		$\stackrel{1}{ }$						${ }^{11}$	Noon．	${ }^{13}$	14	15	16	17	18	19 －	${ }^{20}$	${ }^{21}$	${ }^{22}$	${ }^{23}$	Mid．
Winter．																							
	${ }^{7}$	r	${ }^{\gamma}{ }^{\text {r }}$	\checkmark	r	r					\checkmark												
anuary	－4	－3	－2 -1	－1	＋1	＋1	＋ 2	＋1 $\begin{array}{ll}-2\end{array}$	－4	＋2	＋7	＋10	＋11	＋ 7	＋3	－3	－5	－5	－4	－5	－	－3	－3
February	－3	－1	$\begin{array}{lll}-1 & -1\end{array}$	2	－1	－1	－1	－3 -3	－3	＋1	＋8	＋13	＋12	＋7	＋2	0	－2	－2	－3	－5	－5	－4	－4
$\mathbf{M u r c h}$	－4	－3	－3	－1	－：	－1	0	＋1＋3	＋4	＋7	＋9	＋10	＋9	＋4	－1	－1	－2	－4	－5	－	－5	－2	－4
October	－	－3	$+1$	0	＋1	＋2	＋3	＋2＋1	＋4	＋8	＋11	＋12	＋7	0	－3	－4	－5	－6	－8	－8	\rightarrow	－1	－4
Norember	\rightarrow	－4	－3：-2	－2	－1	＋1	＋5	＋9＋12	＋14	＋16	＋16	＋9	＋3	－2	－4	－6	－8	－10	－11	－11	－8	－6	－5
reember	－5	－	－3．-3	－1	－1	＋1	＋3	＋9＋11	＋12	＋10	＋7	＋3	－1	0	－1	－3	－3	－5	－5	－6	-7	－5	－4
Meant	－5	－3	$-2^{1}-2$	－1	－1	0	＋2		＋4	＋7	＋ 9	＋9	＋7	＋2	－1	－3	－4	－6	－6	－7	－6	－4	－4

Sammer．

¡丁口巾
\cdots io io i
i¢ili
\vec{i} i i $^{\text {it it }}$
ipi＊i＊
if itio
戸○官 $\ddagger+$＋
＋゚ツ＋＋＋＋
¢ ¢ ¢ ¢ ¢ ¢ ¢
号吘干＋＋¢＋＋
7＋¢＋¢
i
¢itioip
iopitap
iof $\vec{i}+\overrightarrow{+}$
î $\vec{i} \hat{i} \vec{i}+\overrightarrow{+} \mid \vec{i}$
¢ị170

Hourly Means of Vertical Foree in C. G. S. Units (Corrected for temperature) at Dehra Dūn from all available days in 1912.

Ноогв.	Mid.	1	2	3	4	5	${ }^{6}$	${ }^{7}$	8	9	10	11	Noon.	13	14	15	16	17	18	${ }^{19}$	${ }^{20}$	${ }^{21}$	22	${ }^{23}$	Mider	Neana.
$\cdot 33000$ + Winter.																										
	γ	7	γ	γ	γ	γ	7	7	7	γ	7	γ	γ	γ	7	γ										
Janaary	194	194	19	194	193	194	193	194	195	194	191	190	192	198	193	196	195	194	194	195	195	196	196	193	195	194
Febraary	202	202	202	202	202	202	202	202	203	201	198	188	${ }^{197}$	198	201	203	203	203	202	202	203	203	202	$2 \cdot 3$	203	201
aiarch	216	216	216	216	216	220	216	218	220	218	213	207	204	205	209	213	215	216	215	215	216	216	216	217	217	214
October	283	284	284	284	283	284	284	286	285	28.2	278	272	271	275	279	281	282	282	28:	283	283	284	285	2x5	284	28:
November	293	292	292	293	292	292	292	293	293	292	288	287	288	288	291	291	292	291	292	291	292	292	293	293	292	291
December	298	298	298	297	297	297	298	297	298	299	298	294	294	296	2:6	297	297	297	298	297	298	297	298	298	298	297
Means	248	248	248	248	$2+7$	248	248	248	249	248	244	241	241	243	245	247	2.17	247	247	247	248	248	218	249	248	247

Deurnal Inequality of the Vertical Force at Dehra Dün as delluced from the preceding Table.

Hons.	Mid.	1	2	3	-		;	7	8		10	11	Noon.	13	${ }^{14}$	15	16	17		19%	20	${ }^{21}$	22	${ }^{23}$	Mid.
Winter.																									
$\begin{gathered} 1919 \\ \text { Montha. } \end{gathered}$; ${ }^{\gamma}$	r	γ	r	γ	γ	7		γ	γ !	r		7	γ	7	γ	γ	7	γ	γ	7	γ	γ	γ	γ
Jamuary	0	0	0	11	-1		-1	0	+1	0	-3	-4	-2	+2	-1	+2	+1	0	0	+1	+1	+2	+2	+i	+1
February	+1	+1	+1	+1	+1	+1	+ 1	+1	+2	0	-3	-5	4	-3	0	+2	+2	+2	+1	+1	+2	+2	+1	+2	+2
March	+2	+9	+	+3	+2	+8	+	+ +	+ ${ }^{0}$	+ \downarrow	-1	-7	-10	-9	- 5	-2	+1	+2	+1	+1	+2	+2	+2	${ }^{-}$	+3
Octuber	+1	+2	+2	+2	+1	+2	+2	+4	+3	0	-4	-10	-11	-7	-3	-1	0	0	0	+1	+1	+2	+3	+3	+2
Nove:马ber	+8	+1	+1	+2	+1	+1	+1	+2	+3	+1	-3	-4	-3	-3	0	0	+1	0	+1	0	+1	+1	+2	+2	+1
December	+1	+1	+1	0	0		+1	0	+1	+2	+1	-3	-9	-1	-1	0	0	0	+1	0	+1	0	+1	+1	+1
Means	+1	+1	+1	+1	0	+1	+1	+1	+2	+1	-3	-8	-6	--4	-2	0	0	0	0	0	+1	+1	+1	+2	+1

\footnotetext{

Apri!	+2	+2	+2	+2	+2	+2	+4	+8	+5	+1	-6	-11	-10	-6	-3	0	+1	+1	+1	+1	+2	+3	$+3$	+3	+3
May	+3	+3	+3	+3	+3	+3	+ 8	+5	+1		-12	-15	-12	-7	-3	+2	+3	+3	+4	+3	+4	+4	+5	+5	+5
June	+3	+3	+3	+3	+3	+	+8	+6	+2	-4	-10	-18	-14	- 10	-8	-2	+1	+3	+4	+3	+4	+5	+5	+5	+5
Joly	+3	+4	+3	+3	+4	+5	+ +8	$+7$	+3	-3	-10	-15	-14	-12	-9	-4	0	+1	+2	+1	+3	+4	+4	+4	+4
Angust	+3	+3	+3	+3	+3	+3	+5	+4	+3	-2	-6	-9	-10	-7	-5	0	+1	+1	+1	+1	+2	+2	+3	+3	+3
September	+2	+3	+3	+2	+3	+3	+4	+5	0	-5	-6	-12	-10	-7	-4	-1	0	0	0	+1	+2	+2	+3	+3	+3
Means	${ }^{3}$	+3	+3	+3	+3	+4	+6	+6	+2	-3	-8	-13	-12	-8	-5	-1	+1	+2	+2	+2	$+3$	+3	+4	+\$	+4

Hourly Means of the Dip as determined at Delira $D_{\tilde{u} n}$ from all available days in 1912.

Hours．	Mid．	1	$\stackrel{2}{2}$	3	＋	5	6	7	8	9	10	11		13	14	15	16	17	18	19	${ }^{20}$	${ }^{21}$	${ }_{22}$	${ }^{23}$	max．	Means．
$\mathrm{N} \cdot \mathbf{4 4 ^ { \circ } + \quad \text { Winter．}}$																										
Months．	，										，															
January	6.0	6.0	59	$5 \cdot 9$	5.8	5.8	5.7	5.7	$5 \cdot 8$	$5 \cdot 9$	$5 \cdot 9$	5\％	$5 \cdot 4$	5.4	$5 \cdot 2$	$5 \cdot 6$	$5 \cdot 8$	6.0	6.1	6.2	$6 \cdot 1$	$0 \cdot 2$	6.2	6.0	6.0	$5 \cdot 8$
Febraary	6.3	6.2	$6 \cdot 2$	6.2	6.3	6.2	6.2	$6 \cdot 2$	6.4	6.3	6.2	5.8	$5 \cdot 6$	$5 \cdot 3$	5．6	59	6.2	6.3	$6 \cdot 3$	$6 \cdot 3$	6.4	8.5	6.5	6.5	6.5	6.2
March	73	72	7.2	T1	71	$7 \cdot 3$	71	72	72	7.0	6.7	6.2	8.0	6.0	6.2	6.7	71	71	71	72	73	73	$7 \cdot 3$	7.2	$7 \cdot 3$	70
Octiber	11.6	11.7	$11 \cdot 5$	11.5	11.5	115	114	115	11\％	$11 \cdot 3$	11.0	10\％	10.2	$10 \cdot 4$	$10 \cdot 9$	11.4	11.6	11.6	11.6	11.8	11.8	$11 \cdot 9$	11.9	11.6	117	11.4
Novenber	12.5	$12 \cdot 3$	123	$12 \cdot 3$	12.2	122	$12 \cdot 1$	11.9	117	11.5	11.2	11.1	11.1	11.5	$11 \cdot 9$	12.2	$12 \cdot 3$	12.4	$12 \cdot 5$	$12 \cdot 6$	12.7	12.7	12.6	12.5	$12 \cdot 4$	12．1
December	129	19.8	128	22.7	226	96	12.6	1\％ 4	12.2	$12 \cdot 1$	12.0	11.8	12.0	$12 \cdot 4$	$12 \cdot 6$	$1 \% \cdot 6$	$12 \cdot 6$	12.7	12． 8	12.8	129	29	13.0	$12 \cdot 9$	18.8	1\％6
Seans	9.4	9.4	93	\cdots	9.3	9：3	92	$1 \cdot 2$	01	00	\cdots	\because	\bigcirc				：	\％ 4	\cdots	05	$\because 5$	$9 \cdot 6$	：$\%$	9.5	：5	$9 \cdot 2$

	$\stackrel{\circ}{\circ}$
㧒	$\stackrel{\circ}{\circ}$
$\bigcirc \%$ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢	8
	$\stackrel{\circ}{\circ}$
介 \％¢ ¢ ¢ ¢ ¢ ¢	$\stackrel{\circ}{\circ}$
	\bigcirc
	$\stackrel{\circ}{\circ}$
凧	8
¢	$\stackrel{\sim}{i}$
	$\stackrel{\square}{\infty}$
¢ ※ ¢ ¢ ¢ ¢ ¢ ¢	\％
\％	：
¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢	－
\％\％¢ ¢ ¢ ¢ ¢ \％	8
¢ 三 ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢	$\stackrel{\square}{\infty}$
	$\stackrel{\square}{i}$
	$\stackrel{\text { ¢ }}{\text { ¢ }}$
\bigcirc	$\stackrel{-1}{9}$
$\stackrel{\sim}{\sim}$	\bigcirc
	$\stackrel{\circ}{\infty}$
成	$\stackrel{\infty}{\infty}$
	$\stackrel{\square}{\infty}$
	\bigcirc
次	$\stackrel{\square}{i}$
	$\stackrel{\circ}{\circ}$
	良

Diurnal Inequality of the Dip at Dehra Dün as deduced from the preceliny Table

Hours.	Mid.	2	$3 \quad 4$	5 6	7	8	9	10	11	Nocn.	13	14	15	16	17	18	19	20	21	23 23	Mid.
Winter.																					
1912 Months.		, ,	, ,	, .	,	,									,	,	,	,	,	' ,	,
January	- +0.3	$+1.2+0.1$	+0.1 0	-0.1	-0.1	0	+0.1	$0 \cdot 1$	$0 \cdot 3$	(1.4	-0.4	-0.0	-0.2	0	$+0.2$	+0.3	+0.4	+0.3	+0.4	$+0.4+0.2$	+0.2
February	. +0.2	$0 \quad 0$	$+0.1$	0 0	0	+C.2	$+0.1$	0	-0.4	-0.6	-0.8	-0.6	-0.3	0	+0.1	$+0.1$	+0.1	+0.2	+0.3	$+0.3+0.3$	+0.3
March	- +03	$+0 \cdot 2+0 \cdot 3$	$\underline{+0.1}$	$+0.3+n \cdot 1$	+0.2	$+0.2$	0	-0.3	-0.8	-1.0	-1.0	-0.8	-0.3	+0.1	+0.1	+0.1	$+0.2$	+0.3	+0.3	+0.3 $j+0.2$	+0.3
October	+0.2	$+0 \cdot 3+0 \cdot 1$	$+0.1+0.1$	+0.1 0	+0.1	$+0^{\prime} 1$	-0.1	-0.4	-0.9	-1.2	- 10	-0.5	0	+0.2	+0.2	+0.2	+0.4	+ $1 \cdot 4$	+0.5	+0.5 +02	+0.3
November	. +0.4	$+0 \cdot 2+1 \cdot 2$	$+1 \cdot 2+0 \cdot 1$	+0.1 0	-0.2	-0.4	--0.6	-0.9	-1.0	-1.0	-0.6	-0.2	+0.1	+0.2	$+0.3$	$+0.4$	+0.5	+0.6	+0.6	$+0.5+0.4$	$+1.3$
December	+03	$+(1 \cdot 3)+0 \cdot 2$	$+010$	0.1	-0ッ	-1) 4	-1.5	-0.6	-0.7	-0.6	-0.2		0	1	$\dagger 0.1$	+0.2	+0.2	$+{ }^{+13}$	+0.3	$+0.4+0.3$	$+0 \cdot 2$
Means	$.1+02$	$+0 \cdot 2+11$	$+0.1+01$	+0.1! 1	0	-0.1		-0.4	-0.7	-0.8	-0\%	-0.6	-01		$+0.2$	+02	+0.3	+03	+0.4	$+0.4+0.3$	+0.3

Sammer.																						
d	+0.3	$+0 \cdot 2$	+0.2	+0.4	+0.2	+0.1	+0.3	+0.5	+0.6	+0.2	-0.5	-1.1	-1.3	-1.1-0.7	$-0 \cdot 2 ; 10+0 \cdot 2$	+0.3	+0.3	+0.4	+0.4	+03	+0.4	+0.3
Мау	- +0.2	+0.1	+0.1	+01	0	0	+0.2	+0.4	+0.4	+0.1	-0.8	-1.3	-13	$-1 \cdot 1-0.7$	$-0.2+0.1+0.5$	+0.4	+0.3	+ $0 \cdot 4$	+04	+0.4	+0.3	+0\%3
June	-0.3	+0.3	+0.3	+0.3	$+1 \cdot 3$	+0.3	+0.4	+0.4	$+0 \cdot 3$	$+1.1$	- $\because 4$	-1:0	-1.1	$-1.0:-0.8$	$-0.4: 0.1+0.2$	+.0.3	+0.4	$+0.3$	+0.3	+0.3	+1.3	$+0 \cdot 3$
July	+ 0	$+0.4$	+0.4	+64	+0.4	+0.4	+0.5	+0.4	+0.3	0	-0.5	-1.0	-1.2	$-1.2-1.0$	$-0.6,-0.2,+02$	+0.3	+0.4	+0.4	+0.4	+0.4	$+0.4$	+0.4
Augast	$+0.1$	+0.1	+0.1	+0.1	0	+0.1	+0.2	+0\%	+0.5	+1)4	+0.2	-0.4	-0.8	$-0.8-0.9$	$-0.4-0.1+0.2$	+02	+0.2	+0.2	+0.2	+0.2	+ ${ }^{-1}$	$+0.1$
September		+0.1	0	0	+0.1	0	+0.1	+0.4	+06	+0.4	$+0.1$	-0.4	-0.7	$-0.8-0.7$	$-0.4-0.1$	0	+0.1	$+01$	+0.1	+0.2	+0.2	+0.2
Heans	$+03$	+0.2	+0.2	+0.2	+0.2	+0.2	+0.3	+0.4	+0.5	+0.2	-0.3	-0.8	-1.0	-1.0 -0.8	-0.3 0 +0.2	+0.3	+03	+0.3	+1)3	+0.3	+0.3	$+{ }_{+}^{+3}$

E.-Tables of result at Barrackpore.

Hourly Means of the Deelination as determined at Barrackpore from all available deys in 1912.																										
Hours.	Mid.	1	$=$		4	5	6	7	8			11	Nood.	${ }^{13}$	14	15	16	17	18	19	20	21	22	23	Mid.	Means
E. $0^{\circ}+\quad$ Winter.																										
Monthe.			,	,										,	,	,	,	,		,			,		,	
January	46.8	467	$46 \cdot 6$	46.6	16.5	464	463	46-1	47.2	474	$46 \cdot 9$	$45 \cdot 8$	45•7	46.4	47.1	475	47.8	$47 \cdot 3$	47.0	47*	47.0	46.9	$46 \cdot 8$	46.8	$46 \cdot 8$	46.8
February	$46 \cdot 3$	463	$46 \cdot 3$	163	16.2	$46 \cdot 2$	$46 \div$	46°	46.6	46.7	$16 \cdot 2$	45.5	45.0	45.3	46.0	46.7	47.1	470	$46 \cdot 5$	$46 \cdot 5$	$46 \cdot 5$	46 ¢	$46 \cdot 3$	$46 \cdot 3$	46.3	$46 \cdot 3$
March	45.7	45.7	45%	457	45.6	15.5	456	$46 \cdot 1$	472	$47 \cdot 9$	47.7	46.3	44.9	44.0	$44 \cdot 1$	$44 \cdot 9$	45.8	46.2	$45 \cdot 8$	457	45.6	$45 \cdot 6$	45.7	45.8	45.7	15.8
October	423	$42 \cdot 4$	$49 \cdot 3$	$42 \cdot 3$	42.2	42.0	41.9	42.6	$43 \cdot 6$	433	42.7	41.6	$40 \cdot 8$	40.8	$41 \cdot 5$	42.2	42.7	$42 \cdot 4$	$4 \% \cdot 1$	$49 \cdot 2$	$42 \cdot 2$	42\%	$42 \cdot 3$	$42 \cdot 3$	$42 \cdot 3$	$42 \cdot 2$
Noveimber	41^{19}	41.9	41.7	41.6	414	41.3	41.3	$41 \cdot 4$	41.9	$42 \cdot 2$	41.9	$41 \cdot 1$	41.3	41.8	$42 \cdot 0$	42.0	42.2	42.0	42.0	42.0	41.8	41.7	$41 \cdot 8$	41.8	41.9	41.8
Decemibei	41.3	413	$41 \cdot 9$		41.0	$40 \cdot 9$	40.7	$40 \cdot 4$	50.6	41.1	41.5	113	$41 \cdot 1$	$41 \cdot 3$	41.3	41.5	41.5	41.5	41.4	41.3	41.3	$41 \cdot 3$	$41 \cdot 3$	41.3	41\%	$41 \cdot 2$
Means	44.1	44.1	41.0	43.9	43.8	$43:$	43.7	43.9	41.5	$44 \cdot 8$	14.5	43.7	43.1	43.3	43.7	$44 \cdot 1$	44.5	44.4	${ }_{4} 41$	4.4	44.1	440	410	$4 \mathrm{i} \cdot 1$	44°	44.1

Diurnal Inequality of the Declination at Barrackpore as deduced from the preceding Table.

Hoarn.	Mid.	1	2	3	4	5	6	7	8	9	10	11	Noon.	13	14	15	16	17	18	19.	20	21	¢2	28	Mid.
Winter.																									
$\begin{gathered} 1912 \\ \text { Months. } \end{gathered}$,				,	,	,	,				,	,	,		
Janaary	0	-0.1	-0.2	-0.2	-0.3	-0:4	-0.5	-0.4	+0:1	+0.6	+0.1	-1.0	-1.1	-0.4	+0.3	$+0.7$	+1.0	+0. 5	+0.2	+0.4	+0.2	+0.1	0	0	0
Febraary	0	0	0	0	-0.1	-0.1	-0.1	-0.1	$+0.3$	+0.4	-0.1	-0.8	-1.3	-1.0	-0.3	$+0.4$	+0.8	+0.7	+0.2	$+0.2$	+0.2	+0.1	0	0	0
March	-0.1	-0.1	-0.2	-0.1	-0.2	-0.3	-0.2	+0.3	$+1 \cdot 4$	$+2 \cdot 1$	$+1.9$	$+0.5$	-0.9	-1.8	-1.7	$-0 \cdot 9$	0	+0.4	0	-0.1	-0.2	-0.2	-0.1	0	-01
October	$+9 \cdot 1$	+0.2	+0.1	$+0.1$	0	-0.2	-0.3	+0.4	+1.4	+1.1	$+0.5$	-0.6	-1.4	-1.4	-0.7	0	+0.5	+0.2	-0. 0	0	0	0	0	+0.1	+ 0.1
November	+ 1	+0.1	-0.1	-i 2	-0.4	-0.5	-0.5	-0.t	+0.1	$+0.4$	$+0.1$	-0.4	-0.5	0	+0.2	+0.2	+0.4	+0.2	+0.2	+0.2	0	-0.1	0	0	$+0 \cdot 1$
December	+0.1	$+0.1$	0	-0.1		-0.3	-0.5	-0.8	-0.6	-0.1	+0.3	+ $0 \cdot 1$	-0.1	$+0.1$	+0.1	+0.3	+0.3	+0.3	+02	+0.1	$+0 \cdot 1$	+0.1	+0.1	+0.1	0
Means	0	0	-0.1	-0 2	-0.3	-0.6	-0.4	-0	+0.4	+0.7	$+6 \cdot 4$	-0.4	$=1.0$	-0.8	-0.4	0	+ $0 \cdot 4$	$+03$	0	$+61$	0	$0 \cdot 1$	-0.1	0	-0.1

Hourly Means of Horizontal Force in C．G．S．Units（Corrected for temperature）at Barrackpore from all available days in 1912.

Hoors．	Mid．	1	2	3	4	5	6	7	9		10	11	Noon．	${ }^{13}$	${ }^{14}$	15	16	17	18	19	20	${ }^{21}$	22	23	msad．	Heane
37000 C．G．S．$+\quad$ Winter．																										
Monthe．	7	γ	7	γ																						
Janarry	350	351	351	353	354	354	357	358	359	359	360	367	368	368	366	364	359	355	352	349	348	348	348	350	350	356
February	355	356	357	358	358	358	359	359	360	361	364	370	375	378	375	369	363	359	358	357	365	353	354	354	355	361
March	${ }^{35} 5$	355	з 35	356	357	358	358	359	363	368	375	：81	383	381	376	369	362	358	358	356	354	352	353	354	335	362
October	365	366	${ }^{\text {® } 67}$	370	370	371	373	373	377	381	388	394	395	390	382	374	368	366	364	362	361	360	361	362	366	372
November	357	359	361	362	363	364	366	370	377	${ }^{38} 3$	387	389	389	383	374	367	363	361	357	354	352	352	352	355	357	367
December	365	366	367	369	369	371	371	375	380	383	388	391	388	382	377	374	373	370	368	368	965	365	364	383	365	${ }^{373}$
Means	358	359	360	361	362	363	36.	366	369	372	377	382	383	380	375	370	365	362	360	357	356	355	355	356	358	365

	핓
¢ \％\％¢ ¢ \％\％\％\％	\％
	$\stackrel{\text {＊}}{ }$
¢ ¢ ¢ ¢ ¢ ¢ ¢ \％\％\％\％	莒
	\％
品	汹
	\％
帤䓪	摘
	\％
	第
呂 呂 呂喜占器	$\stackrel{\text {－}}{ }$
	®
	\％
蔮	䍛
	$\stackrel{\circ}{\circ}$
我	\％
	＊
器志念品品哭	옹
	¢
	\％
	\％
	$\%$
	$\stackrel{\circ}{\circ}$
品	\％
	\％
	＊
	号

Diurnal Inequality of the Horizontal Force at Barrackpore as deduced from the preceding Table.

नours.	Mid.	1	2	3	4	-	${ }^{\circ}$	7	8	9	10	11	Noon.	13	16	15	16	17	18	19		${ }^{21}$			Mid.
Winter.																									
$\begin{gathered} 1912 \\ \text { Monthe. } \end{gathered}$	γ	γ	γ	γ	r	1	7		7	γ	γ	γ		γ	r	7	γ	r	γ						
Janaary	-6	-5	-5	-3	-2	-2	+1	+2	+3	+3	+4	+11	+13	+12	+10	+8	+3	-1	-4	-7	-8	-8	-8	-6	-6
Febrang	-6	-5	-	-3	-3	-3	-2	-2	-1	0	+3	+9	+14	+17	+14	+8	+2	-2	-3	-4	-6	-8	-7	-7	-6
Maroh .	-7	--7	-7	-6	--5	-4	-4	-3	+1	+6	+13	+19	+21	+19	+14	+7	0	-4	-4	-6	-8	-10	-9	-8	-7
October	-7	-6	-5	-2	-2	-1	+1	+1	+5	+9	+16	+22	+23	+18	+10	+2	-4	-6	-8	-10	-11	-12	-11	-10	-6
November	0	-8	- 6	-5	-4	-3	-1	+3	+10	+15	+20	+22	+22	+16	+7	0	-4	-6	-10	-13	-15	-15	-15	-12	-10
Deeember	-8	-7	--6	-4	-4	-2	-2	+2	+7	+10	+15	+18	+15	+9	+4	+1	0	-3	-5	-7	-8	-8	-9	-10	-8
Means	-7	-6	-6	-b	-3	-2	-1	+1	+4	+7	+12	$+17$	+18	+15	+10	+5	0	-3	-5	-	-9	-10	-10	-9	-7
Summer.																									
April	-9	-7	-6	-7	-7	-5	-3	-3	-2	+6	+16	+22	+24	+21	+15	+6	-1	-s	-7	-8	-9	-9	-8	-. 9	-8
May	-	-6	-6	-5	-5	-5	-	-1	+2	+7	+14	+19	+19	+17	+12	+4	-1	-7	-8	-8	\cdots	-9	-8	-8	-
Jane	-6	-5	-	-5	--6	-5	-1	+2	+	+6	+13	+16	+18	+17	+12	+5	-1	- 5	-7	-8	-8	-8	-7	-6	-6
July	-8	--s	-7	--7	-7	-7	-4	0	± 3	+6	+14	+18	+21	+21	+15	+8	0	-6	-9	-9	-10	--9	-9	-8	--8
Augast	-3	-3	-2	-2	-2	-1	0	-2	-3	-3	+2	+7	+12	+13	+11	+8	+2	-4	-7	-7	-8	-6	-6	-5	-3
September	-5	-1	-2	-1	-1	0	+1	-3	-8	-5	+2	+7	+12	+15	+11	+6	0	-4	-4	-5	-6	-6	-5	-5	-5
Means	-7	-6	-5	-5	5	-4	-2	-1	-1	+3	+10	+15	+17	+17	+12	+6	0	-5	-7	-8	-	s	-7	${ }^{7}$	- ${ }^{1}$

Hourly Means of Vertical Force in C．G．S．Units（Corrected for temperature）at Barrackpore from all available days in 1912

	융
	æ
	\％
	\％
耞	骨
	－
	登
呂	\％
	\＆
	¢®®®）
品	あ
京	棠
	$\stackrel{3}{m}$
	융
洆	$\stackrel{\circ}{\circ}$
	$\stackrel{\square}{\infty}$
	$\stackrel{\circ}{\square}$
	$\stackrel{5}{6}$
	汤
	\＃
	\％
含	鴩
	웅
	䢛
占 ${ }_{\text {¢ }}^{\infty}$	啢
	\％
	㓪

Diurnal lnequaiity of the Vertical Force at Barrackpore as deduced from the preceding Table.

Hoars.	Mid.	1	2	3	\pm	5	6	7	8	9	10	11	Noon.	13	14	15	16	17	18	$19{ }^{\circ}$	20	21	22	23	Mid.
Winter.																									
$\begin{aligned} & 1913 \\ & \text { Month. } \end{aligned}$	Y	γ				γ	${ }^{7}$	γ	γ	γ	7	7	$\boldsymbol{\gamma}$	$\boldsymbol{\gamma}$	γ	$\boldsymbol{\gamma}$	γ	7							
January	+1	+1	+1	+1	+2	+2	+3	+4	+3	-1			--2	-1	-1	-1	0	0	+1	+1	+1	+1	+1	+1	+1
February	+2	$+2$	+2	+2	+2	+3	+3	+3	+4	0	-3	-6	-7	-4	-2	-3	0	0	+2	+2	+2	+2	+2	+2	+2
Mach	$+1$	+3	+3	+ +	+5	+	+5	+7	+5	+1	-1	-11	-12	-11	-6	-2	-1	0	+1	+2	+3	+3	+4	+4	+ 4
October	+3	+3	+3	+ \downarrow	+	+4	+5	+6	+3	0	-b		-10	-7	-4	-3	-2	0	+1	+1	+1	+2	+3	+3	+3
November	+2	+2	+2	+9	+2	+3	+4	+5	+5	+3	-1		-4	-5	-7	-6	-3	-1	-1	0	0	+1	+1	+1	+1
December	+1	+1	+1	+1	+1	+1	+2	+2	+4	+3			-3	-4	-5	-4	-1	0	+1	+1	+1	+1	+1	+1	+1
Means	2	+2	+2	+3	+3	+3	+4	+5	+4	+1			-6	-5	-4	-3	-1	0	+1	+1	+2	+2	+2	+2	+2
Summer.																									
April	+2	+2	+2	+2	+3	+3	+5	+4	0	-5	-9	-13	-10	-7	-4	-1	0	+1	+1	+2	+2	+3	+3	+3	+3
May	+1	+1	+1	+1	+1	+1	+3	+3	0	-4	-6	-7	-6	-4	-1	0	+1	0	0	+1	+2	+2	+2	+2	+2
June	+2	+1	+1	+2	+2	+3	+4	+2	-1	4	-6	-8	-7	-5	-3	-1	0	+1	+1	+2	+2	+3	+3	+3	+3
Jaly	+2	+2	+2	+2	+2	+3	+4	+2	-1	-4	-7	-8		-5	-4	-2	0	+1	+2	+2	+2	+2	+3	+3	+3
August	+3	+3	+3	+3	+3	+3	+5	+3	-1	-4	-7	- θ	-7	-4	-2	0	0	0	0	+2	+2	+4	+4	+4	+4
September	+3	+3	+3	+3	+3	+3	+4	+4	0	-3	-7	-10		-7	-3	-1	0	0	+1	+1	+2	+3	+ 3	+3	+4
ill mana	$1+2$	+2	+2	+2	+2	+2	+4	+3	-1	-4	-7	-10	-8	-6	-3	-1	0	0	0	+1	+2	+2	+3	+3	+3

V．os．V．］
Nagnelic survey．

Hoorr．	mid．	1	2	3	4	5	${ }^{6}$	7	${ }^{8}$	9	10	11	Noon．	13	${ }^{14}$	15	16	${ }^{17}$	${ }^{18}$	19	20	${ }^{21}$	：2	${ }_{23}$	mita	Mcane．
$\mathrm{N} 30^{\circ}+$																										
Months．																										
Jauary	$49 \cdot 1$	490	490	$48 \cdot 9$	49.	49.	$48 \cdot 9$	40	48.8	186	$48 \cdot 3$	48.1	48.1	s6：	483	$18 \cdot 4$	487	$15 \cdot 8$	4.0	$4{ }^{19}$	481	49．1	4：1	49.1	1	48.8
Ferears	496	19.5	495	495	49.	49.5	49.5	49\％	49.6	492	$48 \cdot 9$	48.4	48.1	48.2	485	487	$4{ }_{4}$	$40 \cdot 3$	49.5	45	45 e	$40 \cdot 6$	496	496	496	492
March	458	498	498	498	49.8	49.8	49.8	$40 \cdot 1$	496	$45 \cdot 1$	48.5	47.8	$47 \cdot 8$	4i：8	48：3	48.	49.2	445	40．5	$41 \% 7$	4 s	$49 \cdot$	49.	499	498	40，3
Octoter	5\％\％	52．2	52－2	$52 \cdot 1$	59.1	53.1	5\％．1	5\％ 1	51.8	51.4	50.9	50.4	50.2	50，6	51.1	51．	51.8	52.	5\％2	5\％3	52.3	52.4	5．4	52.	52.2	51.8
November	52．9	528	598	527	52.7	527	527	52.6	2.4	52.0	51：5	51：3	51.3	51.4	51.7	5\％\％	5\％．4	52，6	527	52.9	530	53.1	${ }^{531}$	52，	5\％9	52\％
December	52：	528	52.8	52.7	${ }^{52} 7$	52.7	52.7	52，6	5\％\％	52．3	520	51.7	51.7	519	520	52.2	50．4	5\％	52．8	5\％	52.9	52.9	529	53.0	529	525
${ }^{\text {Menns }}$	$51 / 1$	510	51.0	510	51，	510	510	510	59.8	50.4	50.0	436	$48 \cdot 5$	40.7	500	3	51.6	50.8	51：0	51.	51.1	51.2	512	512	51.1	507

	\％
	号
	落
	7
	\％
	\％
	\％
	蒂
	\because
	$\stackrel{\circ}{\circ}$
	\％
	䦡
	\％
	\％
	¢
	品
	咎
	浐
	$\stackrel{\square}{5}$
	m
	官
呂呂号落呂呂	器
	免
	\％\％
	钅
	d

Diuraul Inequality of the Dip at Barrackpore as deduced from the preceding Table.

Huars	Mid.	1	2	3	4	5	6	7	8	9	10	11	Noon.		14	15	16	17	18	19	20	21	22	23	Mid.
Winter.																									
$\begin{gathered} 1913 \\ \text { Months. } \end{gathered}$,		
January	+0.3	+ $0 \cdot 2$	$+0.2$	+0.1	$+0.2$	+0.2	+0.1	+0.2	0	-0.2	-0.5	-0.7	-0.7	-0.6	-0.5	-0.4	-0.1	0	+0.2	+0.3	+0.3	+03	+0.3	+0.3	$+0.3$
February	+0.4	$+0.3$	+0.3	+0.3	+0.3	$+0.3$	+0.3	+0.3	+0.3	0	-0.3	-0.8	$-1 \cdot 1$	-1.0	-0.7	$-0 \cdot 5$	-0.1	+0.1	-0.3	+0.3	+0.4	+0.4	+0.4	+0.4	+0.4
March	+0.5	+0.6	+0.5	+0.5	+0.5	+0.5	+0.6	$+0.6$	$+0.3$	-0.2	-0.8	-1.5	-17	$-1 \cdot 5$	-1.0	-0.4	-0.1	$+0.2$	+0.2	$+0.4$	+0.5	+0.8	+0.6	+06	+0.5
October	+0.1	+0.4	+0.4	+0.3	+0.3	+0.3	+0.3	+0.3	0	-0.4	-0.9	-1.4	-1.6	-1.2	-0.7	-0.3	0	+0.2	+0.4	+0.5	+0.5	+0.6	$+0.6$	+0.6	+0.4
November	+0.5	+0.4	+0.4	+0.3	+0.3	+0.3	+0.3	$+0.2$	0	-0.4	-0.9	-1.1	$-1 \cdot 1$	-1.0 !	- -0.7	-0.4	0	+0.2	$+0.3$	+0. 5	$+0.6$	$+0.7$	+07	+0.6	+0.5
December	0.4	+0.3	+0.3	$+\mathrm{C} \cdot 2$	$+0 \cdot 2$	$+0.2$	+0.2	+0.1	0	-0.2	-0.5	-0.8	-0.8	-0.6	-6.5	-0.3	-0.1	+0.1	$+0.3$	+0.3	+0.4	+0.4	+0.4	+0.5	+0.4
Means	$1+0.4$	+0.3	+0.3	+0.3	+0.3	$+0.3$	+03	$+0 \cdot 3$	$+0 \cdot 1$	-0.3	-0.7	-1.1	-1.2	-10	-0.7	-04	-0.1	$+0 \cdot 1$	$+0 \cdot 3$	$+0 \cdot 4$	$+0.4$	+0.5	+0:5	+0.5	+0.4
Sammer.																									
April	+0.5	$+0.5$	+0.6	$+0.5$	+0.5	+0.4	+0.5	+0.4	+0.1	-0.5	-1.2	-1.7	-1.6	-13	-0.8	-0.3	+0.1	+0.3	+0.4	+0.5	+0.5	+0.0	+0.6	+0.6	+0.6
Mas	+0.3	$+0.3$	+0.3	+0.2	+0.2	+0.3	+0.3	$+0.2$	-0.1	-0.6	-1.0	-1.3	-1.2	-10	-0.6	-0.2	$\div 0 \cdot 1$	+0.2	$+0 \cdot 3$	± 04	+0.5	+0.5	+0.5	+0.5	+0.4
Jane	+0.4	+0.3	$+0 \cdot 3$	+0.4	+0.4	+0.5	+0.4	+0.1	-0.1	-0.4	-0.9	$-1 \cdot 1$	$-1 \cdot 1$	-1.0	-0.6	-0.2	$+0.1$	$+0.3$	+0.4	+0.5	+0.5	+0.6	+0:5	+0.5	$+0.5$
Jaly	+0.5	+0.5	+0.5	+0.5	+0.5	+0.5	$+0.5$	+0.2	-0.2	-0.5	-1.0	-1.2	-1.2	-1.2	-0.8	-0.4	$+0.1$	+0.4	+0.5	+0.5	+0.6	+0.5	+0.8	+0.6	+0.6
August	+0.3	+0.3	$+0 \cdot 3$	+0.3	+0.3	$+0.2$	+0.4	+0.3	0	-0.2	-0.5	-0.9	-0.9	-0.8	-0.6	-0.3	-0.1	+0.1	+0.3	+0.4	+0.5	+0.5	+0.5	+0.5	+0.4
September	+0.3	$+0 \cdot 3$	$+0 \cdot 2$	$+0.2$	+0.2	$+0 \cdot 2$	$+0.2$	+0.3	+0.3	-0.1	-0.6	-1.0	-1.2	-1.2	-0.7	-0.4	0	+0.1	+0.2	$+02$	+0.3	+0.4	+0.3	+0.3	$+0.4$
Mems	+0.3	+0.3	+0.3	+03	+0.3	$+0.3$	+0.3	+0.2	0	-0.4	-0.9	-1.2	-1.2	$-1 \cdot 1$	-6.7	-0.3	0	+0.2	$+0.3$	$+0.4$	+0.4	$+0.5$	+0.5	$+0.5$	+0.4

F．－Table of results at Toungoo．
Howrly Means of the Declination as determined at Toungoo from all available days in 1912.

Hoors．	Mid．	1	2	3	4	5 ！	${ }^{6}$	：	${ }^{8}$	9	10	11	Noon．	13	！ 14	15	16	17	18	19	${ }^{2}$	21	${ }^{22}$	${ }^{23}$	mid．	Means．
E． $0^{\circ}+\quad$ Win																										
Months．																										
Janaary	16.1	162	16.1	16.0	15.9	15.8	15.6	15\％	16.2	16.5	$16 \cdot 1$	15.5	$15 \cdot 4$	$15 \cdot 9$	$16 \cdot 3$	16.7	$18 \cdot 8$	16.7	16．4	$16 \cdot 5$	$16 \cdot 4$	16.2	16.2	16.1	$16 \cdot 1$	16.1
February	15.5	156	15%	$15 \cdot 6$	15.6	15.5	15.4	$15 \cdot 5$	15.8	15.8	15.5	15.1	14.7	14.9	15.5	16.0	163	16.2	$15 \cdot 9$	15.9	15.8	15.7	$15 \cdot 6$	15.6	15.5	15.6
March	－ 150	150	150	150	14.9	148	148	$15 \cdot 2$	16.1	18.7	16.6	10.8	14.6	138	13.6	14：3	14.9	$15 \cdot 3$	150	1.1	150	15.0	15.0	150	150	15.1
October	－ 118	$11 \cdot 9$	11.9	11.7	11.6	11.4	11.4	120	$12 \cdot 7$	12.7	123	11.5	10.8	107	11.0	11.7	12.1	$1 \% 1$	11.8	11.81	11.6	11.6	$11 \cdot 6$	117	11.8	11.7
Norember	11.2	112	11.1	$11 \cdot 1$	11.0	109	$10 \cdot 8$	11.0	113	11.6	11.6	11．3	11.2	11.2	11.4	113	11．5	11.7	11.5	11－4	$11 \cdot 3$	113	11.2	11.2	11.2	113
December	10.7	10.7	106	10：5	103	102	10.1	$\theta \cdot 8$	10.1	20.6	11.0	11.0	108	10.7	$10 \cdot 7$	10.7	11.0	11.1	11.0	$10 \cdot 9$	$10 \cdot 8$	10.7	10.6	10.7	107	10.7
Means	／ 13.4	13.4	$13 \cdot 1$	133	132	$13 \cdot 1$	13.0	$13 \cdot 2$	13.7	14.0	$13 \cdot 9$	13.4	12.9	$12 \cdot 8$	13.1	13%	13.8	13.9	13．6	13.6	13.5	$13 \cdot 4$	13.4	13.4	13.4	13.4

	品
	\％
咢	$\stackrel{\text { \％}}{\text { \％}}$
㕩	品
Э	富
	\％
	＊
	\％
产	\％
	\％
	浐
	$\stackrel{\oplus}{=}$
	$\stackrel{8}{-1}$
－	茄
	$\stackrel{\circ}{\text { ¢ }}$
	$\stackrel{\circ}{9}$
	$\stackrel{8}{8}$
商	葛
	？
	$\stackrel{\text { in }}{\sim}$
	$\stackrel{\text { 今，}}{\text { ¢ }}$
	$\stackrel{\circ}{\circ}$
	$\stackrel{\circ}{9}$
	\％
	$\stackrel{\square}{\text { \％}}$
	㓪

Diurual Inequality of the Ilorizontal Force a/ Toungoo as Ileduced from the'priceding Talle.

Huara.	Mrial	1	2	3	4	5	6	7	8	9	10	11	Noon.	13	14	15	16	17	18	19	${ }^{20}$	${ }^{21}$	22	${ }^{23}$	Mid
Winter.																									
$\begin{aligned} & 1913 \\ & \text { Monthis. } \end{aligned}$	r	γ	γ	${ }^{\gamma}$	γ	${ }^{\gamma}$	γ	γ	${ }^{\gamma}$	${ }^{7}$	${ }^{\gamma}$	${ }^{\gamma}$	γ	γ	γ	γ	${ }^{7}$	γ							
January .	-6	-6	4	-4	-2	-2	0	+3	+	+8	+10	+13	+15	+12	+8	$+5$	+1	-2	-5	-7	-	-9	-8	-7	-6
Pebruasy	-7	-7	-3	-	-4,	-3	-3	-3	-1	+4	+11	+15	+21	+19	+12	+6	0	-5	-6	\rightarrow	-7	-8	-8	-7	-7
Maroh	-9	-9	--9	-8	-8	-7	-5	-5	0	+9	+21	+28	+30	+25	+16	+	-3	-8	-8	-8	-9	-11	-11	-11	-
Oetoeer	-8	-8	-8	-5	-4	- 6	-3	-3	+1	+11	+20	+27	+86	+20	+10	0	-6	-9	-8	-9	-10	-12	-12	-11	-
November	-9	-8	-6	-5	- 6	-4	-2	+1	+8	+16	+24	+27	+26	+18	4.10	+2	-5	-8	-9	-12	-13	-13	-13	-11	-9
Deemmier	-7	-7	-5	-4	-3	-2	0	+2	+6	+11	+15	+19	+17	+12	+6	0	-2	-4	-6	7	7	-7	-7	-8	-7
Means	-8	-8	-	-5	-4	-4	-2	-1	+3	+10	+17	+21	+22	+18	+10	+3	-3	-6	-7	-8	-9	-10	-10	-9	-

Sammer.																								
April	-11	-9	-8	-7	-8	$-7{ }^{1}-6$	-6	-1	+11	+24	+30	+29	+23	+14	+2	-7	-9	-10	-10	-10	-11	-11	-10	-10
May	-7	-8	-6	-5	-5	-5 -4	-2	+2	+11	+18	+24	+22	+17	10	+2	-5	-10	-11	-8	-9	-9	${ }^{-9}$	-8	-6
June	-7	-6	-6	-5	-5	-6 -4	0	+5	+11	+16	+21	+21)	+18	+11	+3	-6	-10	-10	-8	-8	-9	-s	-8	-7
July	-9	-9	-9	-9	-8	-8 -6	- 2	+3	+10	+18.	+23	+24	+22	+15	+6	-3	-9	-1i	-9	-10	-11	-10	-9	-8
Angust	-5	-5	-4	-3	-4	-2 -2	-3	-2	+4	+11	+13	+18	+15	+9	+6	0	-5	-8	-7	-7	-7	-7	6	-6
September	-6	-6	-5	-2	-2	-2 $\quad-2$	-5	-5	+1	+10	+15	+18	+16	+9	+2	-4	-6	-7	-5	-6	-7	-7	5	-6
Means:	-7	-7	-6	- 5	-5	-5: -4	-3	+1	+8	+16	+21	+22	+19	+12	+4	-4	-8	-9	-8	-8	-9	-8	-7\%	-7

Hourly Means of Horizontal Force in C. G. S. Units (Corrected for temperature) at Toungoo from all available days in $1912 \dot{\text { dit }}$.

Hours.	Mis.	1	2	3	*	5	${ }^{6}$	7	8	9	10	11	Noon.	${ }^{13}$	14	15	16	17	18	19	20	${ }^{21}$	22	23	midt	Meaus
-38000 C.G.S.t Winter.																										
Mouths.	γ	γ	γ	${ }^{\gamma}$	γ	γ	γ	γ	$\boldsymbol{\gamma}$	γ																
Janary	860	860	862	862	864	864	866	869	871	87.	876	879	881	*78	874	87 i	867	864	861	859	857	857	858	859	860	866
February	*65	86;	869	868	868	S69	869	869	871	876	883	887	893	891	88.	878	872	867	${ }^{866}$	866	865	864	863	865	865	872
March	868	868	868	869	869	870	872	872	877	886	898	90.5	907	902	893	88.	874	869	869	869	868	866	868	866	868	877
Octover	5^{593}	993	893	896	897	897	898	898	90.	912	921	928	927	991	911	901	895	892	893	892	891	8s9	889	890	893	901
November	891	892	894	895	896	896	898	901	908	916	924	927	934	918	910	90.	895	892	891	888	887	887	887	889	891	900
December	898	898	900	901	912	903	90	907	911	916	920	924	922	917	411	905	903	9.11	899	8.18	898	898	898	887	898	905
Means	879	879	88!	: 82	883	883	8*5	886	590	897	904	908	808	905	897	890	884	881	880	879	878	877	877	878	879	s87

Dinruai 'nequality of the Declination at Toungoo as deduced from the preceding Table.

Hourly Merns of Vertical Force in C．G．S．Units（Corrected for temperature）at Toungoo from all available days in 1912.

Horrs．	3id．	1	2	3	4	5	6	7	8	，	10	11	｜Noon．	13	${ }^{14}$	15	16	17	18	19		${ }^{21}$	22	${ }^{23}$	mid．	neas，
16000 c．g．s．t																										
Mortbs．	γ	r	r	7	γ	r	γ	γ	r	γ	r	r	r	γ	r	γ	γ	r	r	r	γ	γ	γ	r	r	7
Janaary	534	335	535	534	534	534	534	534	533	529	543	522	520	525	520	531	632	531	532	533	\％33	533	534	534	534	531
Feiruary	${ }_{542}$	542	5	$5{ }^{5}$	${ }_{5}+1$	541	542	542	510	536	${ }^{3} 3$	530	529	633	537	539	540	539	539	540	541	511	51	541	542	${ }^{539}$
March	544	544	${ }^{54} 4$	544	543	543	544	545	543	537	${ }^{3} 3$	${ }^{525}$	522	525	533	540	542	541	541	5.12	543	513	543	544	544	${ }^{599}$
October	552	552	552	562	553	552	563	555	551	44	${ }^{539}$	${ }^{537}$	537	542	546	549	549	549	549	549	550	550	551	552	552	${ }^{6 \pm 9}$
Norember	670	570	370	570	570	570	570	570	370	566	562	561	561	${ }^{66}$	564	566	568	568	569	569	569	369	670	571	571	668
December	584	584	584	584	584	584	584	584	585	588	584	58.	577	577	578	580	582	584	584	584	584	584	584	585	585	583
Mense	564	555	555	${ }^{564}$	554	554	365	555	564	550	545	513	541	544	548	551	552	552	553	${ }^{5} 3$	553	553	554	565	555	553

	$\stackrel{7}{\square}$
	咢
	吕
	尔
	含
名答予品品含	\％
	움
	器
	窝
	$\%$
	\％
	\％
	중
	\％${ }_{\text {\％}}$
	留
	\％
	7
	\％
	发
	詈
	告
挌言预浞予咢	${ }_{8}^{8}$
	8
	\％
	\％
	\％

Diurnal Inequality of the Vertical Force at Tounyoo as deduced from the preceding Table.

Hours.	Miı.	1	2	3	\pm	5	\checkmark	7	8	9		11	Nuon.	${ }^{13}$	1.	15	${ }_{16}$	17	${ }^{18}$	${ }^{19}$	\because	${ }^{21}$	2	${ }^{23}$	$\\|^{\text {Mid. }}$
Wiuter.																									
$\begin{gathered} 1912 \\ \text { Month. } \end{gathered}$	γ	γ	γ	γ	γ	\geqslant	γ	γ	\checkmark	γ	γ	r	γ	γ	γ	γ	7	γ	γ	γ	γ	γ	γ	\bigcirc	γ
January	+3	+4	+4	+3	+3	+3	+3	+3	+	-3	-8	-9	-11	-6	-2	0	+1	${ }^{\circ}$	+1	+2	+	+	+3	+3	+3
February	+3	+3	+3	+3	+2	$+2$	+3	+3	+1	-3	-i	-9	-10	-6	-2	0	+1	0	0	+1	+4	+2	+2	+	+3
March	+5	+5	+5	+5	+4	+4	$+5$	+6	+	-3	-9	-14	-17	-14	\cdots	+1	+3	+2	+2	+3	+ +	+4	+ 1	+5	+5
October.	+3	$+3$	+3	+3	$+3$	+3	+	+ 6	+2	-5	-10	-12	-12	-7	-3	0	${ }^{0}$	0	0	0	+1	+1	+2	+3	+3
November	+2	+2	+2	+2	+2	+2	+2	+2	+2	-2	-6	-7	-7	-5	-4	-2	0	0	+1	+1	+1	+1	+2	+3	+3
Deember	+1	+1	+1	+1	+1	+1	+1	+1	+2	+3	+1	-1	-6	-6	-5	-3	-1	+1	+1	+1	+1	+1	+1	+2	+2
Means	+2	$+3$	+3	+2	+2	+2	+3	+3	+2	-2	-7	-9	-11	-8	-4	-1	0	0	0	+1	+1	+1	+2	+3	+3
Summer.																									
${ }^{\text {April }}$.	+ +	+ +	+4	+4	+ ${ }^{+}$	+ +	+	+	0	-7	-13	-15	-15	-9	--1	+1	+3	+2	+1	+2	+2	+3	+ +	+4	+4
May	+3	+3	+3	+3	+3	+4	+7	+5	0	--8	-13	-14	-12	-7	-3	+1	+3	+2	0	+2	+2	+3	+3	+3	+4
June	+3	+3	+3	+3	+3	+4	+7	+6	+1	-7	-11	-13	-12	-6	-4	0	+2	+2	+3	+2	+2	+3	+3	+4	+4
Saly	+6	+ 6	+6	+5	+	+6	+10	+ 7	-1	-12	-18	-15	-14	-10	-4	+2	+6	+5	+2	+1	+2	+3	+4	+4	+4
Auguat.	+4	+ 4	+4	+4	+	+4	+7	+5	0	-8	-13	-14	-13	-9	-4	0	+3	+3	+2	+2	+2	+3	+3	+3	+4
September	+4	+4	+ 4	+4	+4	+4	$+8$	+6	-1	-10	-15	-17	-15	-8	-1	+4	+6	+3	+1	+3	+3	+4	+4	+4	+5
Means	+4	+4	+4	+4	+4	+4	+8	+6	0	-9	-13	-15	-13	-8!	-3:	+1	+4	$+3$	+1	+2	+2	+3	+4	$\stackrel{+}{+4}$	+4

Mourly Means of the Dip as determined at Toungoo from all available days in 1912.

Eiours.	Sid.	1	2	3	\pm	5	6	7	8	9	10	11	Noon.	13	14	15	16	17	18	19	${ }^{20}$	21	22	23	Mid.	Means.
N. $233^{\circ}+\quad$ Winter.																										
Months.					,	,	,			,	,				,	,		,				,	,	,	,	
Jazuary	2.9	3.0	29	$2 \cdot 9$	$2 \cdot 8$	$2 \cdot 8$	$2 \cdot 7$	2.7	$2 \cdot 5$	$2 \cdot 1$	$1 \cdot 6$	14	1.2	17	$2 \cdot 1$	$2 \cdot 3$	26	$2 \cdot 6$	$2 \cdot 8$	29	20	29	$3 \cdot 0$	3.0	$2 \cdot 9$	25
Febraary		34	3•3	$3 \cdot 3$	32	$3 \cdot 2$	$3 \cdot 3$	33	$3 \cdot 0$	$2 \cdot 6$	21	$1 \cdot 8$	1.5	$1 \cdot 9$	$2 \cdot 4$	2.7	3.0	3.1	$3 \cdot 1$	32	$3 \cdot 3$	3×3	33	$3 \cdot 3$	$3 \cdot 4$	29
March		$3 \cdot 1$	$3 \cdot 4$	3.4	$3 \cdot 3$	$3 \cdot 3$	$3 \cdot 3$	3.4	$3 \cdot 1$	$2 \cdot 3$	14	$0 \cdot 8$	0.5	00	$1 \cdot 8$	$2 \cdot 7$	$3 \cdot 1$	3.2	3.2	33	$3 \cdot 3$	3.4	34	3.5	$3 \cdot 4$	28
Oitober	$3 \cdot 2$	32	$3 \sim 2$	$3 \cdot 1$	$3 \cdot 1$	3.1	3.1	$3 \cdot 3$	$2 \cdot 9$	20	14	10	10	$1 \cdot 6$	$2 \cdot 2$	2.7	2.9	3.0	30	3.0	31	$3 \cdot 2$	$3 \cdot 3$	3.3	3.2	$2 \cdot 7$
Novernber	46	$4{ }^{\circ}$	45	45	4.5	45	4.6	43	$4 \cdot 1$	$3 \cdot 5$	$3 \cdot 0$	2.8	2.9	$3 \cdot 3$	$3 \cdot 6$	4.0	4.4	4.4	4.6	46	47	4.7	$4 \cdot 8$	48	4.7	4.2
December	$5 \cdot 4$	54	$5 \cdot 4$	54	$5 \cdot 3$	$5 \cdot 3$	$5 \cdot 3$	5%	$5 \cdot 1$	50	4.8	4.5	4.2	4.3	46	49	5%	$5 \cdot 4$	54	51	5-4	$5 \cdot 4$	$5 \cdot 4$	$5 \cdot 6$	$5 \cdot 5$	$5 \cdot 1$
Means	$3 \cdot 8$	38	$3 \cdot 8$	3.8	37	$3 \cdot 7$	5.7	3.7	$3 \cdot 5$	$2 \cdot 9$	24	$2 \cdot 1$	19	$2 \cdot 3$	2.8	3.2	3.5	36	3.7	3\%	3•8	3.8	3.9	3.9	3.9	$3 \cdot 4$

Diurnal Inequality of the Dip as determined at Toungoo as deduced from the precering Table.

G.-Tables of results at Rodaikānal.

fiours.	мid.	1	2	${ }^{3}$	4	5	6	7	8	9	10	11	N cos .	13	14	15	16	17	18	19			22	${ }^{23}$	Mid.	Moans
W $1^{\circ}+\mathrm{H}$																										
Months.							,		,	,						,			,	,	,	,				,
Janus:y	$3 \cdot 3$	3.1	3.5		36	3.7	$3 \cdot 9$	3.7	3.5	3.1	3.5	$3 \cdot 9$	$3 \cdot \mathrm{~A}$	$3 \cdot 6$	3.0	$2 \cdot 6$	$2 \cdot 5$	2.8	30	3.0	${ }^{3.1}$	$\therefore 2$	$3 \cdot 3$	$3 \cdot 3$	$3 \cdot 3$	33.
Febraary	3.7	3.8	3.8	3.8	$3 \cdot 9$	$3 \cdot 9$	$3 \cdot 9$	$3 \cdot 9$	3.9	$3 \cdot 9$	43	4.6	4.7	45	3.9	$3 \cdot 3$	$3 \cdot 0$	3.2	3.1	3.5	3.6	3 36	3.7	3.7	3.8	3.8
March	4.3	43	43		45	4.5	H	4.3	4.0	37	3.7	4.2	48	5.2	$5 \cdot 1$	$4 \cdot 7$	43	4.2	43	4.4	$4 \cdot 5$	4.5	4.5	4.4	4.4	4.4
October	7.2	72	72	7.3	75	76	76	$7 \cdot 3$	7.0	70	75	7.9	$8 \cdot 1$	78	7:1	7.0	$0 \cdot 8$	7.0	7.2	$2 \cdot 3$	7.3	$7 \cdot 4$	7.4	7.3	$7 \cdot 3$	$7 \cdot 4$
Norember	78	7.8	$7 \cdot 9$	8.0	8.1	8.1	8.2	8.5	$8 \cdot 3$	$8 \cdot 3$	8.4	82	$7 \cdot 9$	74	7:3	72	73	74	$7 \cdot 4$	$7 \cdot 6$	77	7.7	$7 \cdot 8$	78	78	7.8
December	8.2	8.2	83	8.5	8.6	87	$8 \cdot 9$	9.2	$9 \cdot 2$	8.8	8.7	$8 \cdot 6$	$8: 1$	8.2	$2 \cdot 3$	78	79	79	8.0	8.1	8.2	8.1	8.2	8.2	8.2	$8 \cdot 4$
Means	$5 \cdot 8$	5.8	5.8	$5 \cdot 9$	6.0	6.1	6.2	6.2	6.0	$5 \cdot 8$	$6 \cdot 0$			6.1	5.8	$5 \cdot 1$	$5 \cdot 3$	5.1	$5 \cdot 6$	${ }^{5} 7$	57	$5 \cdot 8$	58	58	5.8	$5 \cdot 9$

Diurnal Inequality of the Declination at Koldikianal as seduced from the preceding Table.

नопг.	Mià.	1	2	3	4	5	${ }^{6}$		8	${ }^{9}$	10	11	Noun.	13	14	15	16	17	18	19	${ }^{20}$	${ }^{21}$	${ }^{2}$	${ }^{23}$	Mid.
Winter.																									
$\begin{aligned} & 1912 . \\ & \text { Monthe. } \end{aligned}$																									
January	0	-0.1	-0.2	-0.3	-0.3	-0.4	-0.6	-0.4	-0.2	+0.2	-0.2	$0 \cdot 6$	$0 \cdot 8$	-0.3	$+0.3$	+0.7	+0.8	+0.5	$+0.3$	$+1.3$	$+0 \cdot 2$	+0.1	0	0	0
February	+0.1		0	0	-0.1	-0.1	-0.1	-0.1	-0.1	-0.1	5	-0.8	-0.8	-0.7	-0.1	+0.5	+0.8	+0.6	+0.4	$+0.3$	+0.2	$+0.2$	+0.1	+0.1	0
March	+0.1	+0.2	+0.1	0	-0.1	-0.1	0	+0.1	+0.4	+0.7	+0.7	+02	-0.4	-0.8	-0.7	-0.3	+0.1	+0.2	+0.1	0	-0.1	-0.1	-0.1	0	0
Octoter	+4.2	+0.2	+03	$+{ }^{+1}$	-1:1	-0.2	-0.2	+0.1	$+1 \cdot 4$	+0.4	-0.1	-0.5	-0.7	-0.4	0	+0.4	+0.8	+0.4	+0.2	+0.1	+0.1	0	0	+0.1	$+0.1$
Nurember	0	0	-0.1	-0.2	-0.3	-03	-0.4	-0.7	-0.5	-0.5	-0.8	-0.4	-0.1	+0.t	+0.5	+0.6	+0.5	+0.4	+0.4	+0.2	+0.1	+0.1	0	0	0
December	+0.2	$+0.2$	+0.1	-0.1	-0.2	-0.3	-0.5	-0.8	-0.8	-0.4	-0.3	-0.2	0	+ +2	+0.5	+0.6	+0.5	+0.5	+0.4	+0.3	+0.2	+0.3	10.2	+0.2	$+0.2$
Means		+0.1	- 1	0	-0.1	-0.2	-0.3	-0.3	-0.1	+0.1	-0.1	-0.3	-0.4	-0.2	$+0.1$	+0.5	+0.6	+0.5	$+0.3$	+0.2	$+0.2$	+0.1	$+0.1$	+0.1	+0.1
Summer.																									
$\mathrm{ap}_{\text {pril }}$		1	+0.1		+0.1	$+0.1$	+0.4	+1.0	+122	+0.8	+0:1	-0.4	-1.2	-1.3	-0.9	-0.5	${ }^{0}$	+0.3	+0.1	-03	-0:1	-0.4	-0.3	-0.1	0
May	$+6.1$	+0.2	+0.3	+0.3	+0.3	+0.4	+1.0	$+1.5$	+174	+ 1.9	-0.1	-1.0	-1.5	-1.5	-1.0	-1.3	+0.2	+0.4	+0.2	-0.3	-0.4	-0.4	-0.3	0	+0.1
June	+0.1	$+0.2$	$+0 \cdot 9$	+1) 4	+0.4	+0.5;	+0.9	+1.6	+17	+1.0	+0.1	-0.9	-1.4	-1.5	-1.0	-0.6	-0.3	-0.1	-0.1	-0.4	-0.4	-0.1	-0.3	-0.1	+0.1
July	"	+0.1	+0.2	+0.2	+0.3	+0.4	+1.0	+17	+17	+1.3	+0.2	-0.7	-12	-1.3	-12	-0.7	-6.2	0	-0.1	-0.3	-6.3	-0.3	-0.3	-0.1	0
August	+0.1	+0.2	+0.3	+0.3	+0.3	+0.4	+10	+17	+1.6	+0.7	-0.2	-1.1	-1.6	-1.5	-0.9	-0.6	0	+02	+0.1	-0.1	-0.3	-0.3	-0.3	-0.1	+0.1
Sestenber	-0.1	-0.1	0	+0.1	+0.1	+0.2	+0.7	+15	+1.4	+0.6	-0.1	-12	-1.8	-1.5	-0.8	0	+0.6	+0.6	+0.3	-0.1	-0.2	-0.2	-0.2	-0.2	-0.1
Meal:s	0	+0.1	$+0^{2}$	$+0 \cdot 2$	+0.3	+0.3	+0.8	+1.5	+1.5	+0.9	0	-0.9	-1.4	-1.4	-1.0	-0.4	+01	+0.2	+0.1	-0.2	-0.3	-0.3	-0.3	-0.1	0

Dinfnal Inequality of the Ilorizontal Force at Kodaikānal as deduced from the precerling Table.

Hourly Means of Vertrcal Force in C．G．S．Units（Corrected for temperature）at Kidaikànal from all available days in $191 \dot{2}$.

Hoars．	Mid	1	2	3	4	5	6	7	8	9	10	11	Noon．	13	14	15	16	17	18	19	${ }^{20}$	${ }^{21}$	${ }^{22}$	${ }^{23}$	Mid．	Meana
．02000 C．G．S．t Winte																										
Months．	γ	γ	y	\boldsymbol{r}	γ	γ	7	\checkmark	γ	γ	7	γ	γ	γ	y	γ	γ	γ	γ	γ	y	γ	γ	γ	γ	γ
Janaary	585	585	585	385	585	586	595	585	581	575	570	570	573	578	581	585	58.1	582	532	583	584	584	585	585	588	562
Febraary	593	594	594	29．4	593	$59 \downarrow$	594	594	590	584	579	577	579	533	588	591	590	589	539	590	591	591	591	593	594	599
Harch	597	597	597	597	597	597	597	599	589	595	598	577	573	574	578	585	590	593	593	593	594	595	596	597	587	592
October	639	640	6.11	6.10	610	6.10	642	643	639	631	623	617	817	617	619	624	628	631	634	631	635	637	638	640	6.10	633
vember	645	616	615	6.5	6.4	645	545	613	641	638	635	637	638	635	${ }^{63}$	634	636	638	6.0	611	642	643	645	6.16	648	641
December	6ธ2	65.2	652	652	652	652	652	650	650	6.18	648	6.16	655	641	838	610	6.4	646	649	649	650	650	650	651	052	648
Means	819	619	619	619	619	619	619	619	617	612	607	804	60.4	605	696	610	${ }_{6} 12$	613	615	615	${ }_{616}$	${ }_{6} 61$	618	619	619	614

	끌
	动
	永
	융
莫 궁	웅
	$\stackrel{3}{3}$
	$\stackrel{\infty}{6}$
	$\stackrel{8}{6}$
	$\stackrel{18}{6}$
	$\stackrel{\infty}{0}$
	\＃
为 둥	8
	흉
	\％
	－\％
	응
	7
	合
	\％
気	ザ犬
	威
镸	ㅈํㅇ
	ปี
	， 7
	쿵
	遻

Diurnal Inequalily of the Vertical Force at Kodaikānal as deduced from the precedtiny Table.

Hoars.	mid.	1	3	3	4	5	6	7	8	9	10	${ }^{11}$	Noon.	${ }^{13}$	${ }^{14}$	15	16	17	18	19	20	21	22	${ }^{23}$	mid.
Winter.																									
$\begin{aligned} & \text { Mouths. } \\ & \text { Mous. } \end{aligned}$																									
January	+3	+3	+3	+ 3	+3	+4	+3	+3	-1	--7	-12	-12	-9	-4	-1	+3	+2	0	0	+1	+3	+2	+3	+3	+1
February	+4	+5	+5	+ 5	+ 4	+5	+5	+5	+1	-5	-10	-12	-10	-6	-1	+2	+1	0	0	+1	+2	+2	+2	+ ${ }^{+}$	+5
Mrat	+5	+5	+5	+5	+5	+5	+5	+7	+7	+3	-4	-15	-19	-18	-14	-7	-	+1	+1	+1	+2	+3	+4	+5	+5
a,tober	+6	+7	+8	+7	+7	+7	+9	+10	+6	-2	-10	-16	-16	-16	-14	-9	-5	-2	+1	+1	+2	+4	+5	+7	+7
Novenber	+4	+5	+ ${ }^{+}$	+	+3	T4	+4	+2	0	-3	-6	- +	-3	-6	-8	-7	-	-3	-1	0	+1	+2	+4	+5	+5
Deceuber	+4	+ +	+	+	+4	+	+4	+2	+	0	0	-2	-3	-7	-10		-	-2	+1	+1	+2	+2	+2	+3	+4
Means	+5	+ 5	+5	+5	+5	+ 5	+5	+5	+3	-2	-7	-10	-10	-9	-8	$-\frac{1}{6}$	-	-1	+1	+1	+*	+3	+4	+5	+5

\footnotetext{
Summer.

Hourly Means of the Dip as determined at Koduikanal from all available days in 1912.

Months.	,						,			,	, ¢											,		.	
Janamry	56.5	56.5	56.5	56.4	56.5	56\%	56.4	56.4	56.0	$55 \cdot 3$	$54.8 \quad 54.8$	55.1	55.7	$56 \cdot 0$	$56 \cdot 5$	56.4	56.2	$56 \cdot 2$	56.3	$56 \cdot 4$	56.4	56.5	56.5	$58 \cdot 8$	56.1
Febrasry	57.2	73	37.2	$57 \cdot 2$	57. 2	$57 \cdot 2$	57.2	57.2	$56 \cdot 8$	562	$\begin{array}{lll}55 \cdot 6 & 55 \cdot 4\end{array}$	$55 \cdot 6$	36.0	56.6	56	56.9	$56 \cdot 8$	56.8	56.9	57.0	57.0	57.0	$57 \cdot 2$	57.3	56.8
March	57.6	$57 \cdot 6$	57.6	57.6	57.6	57-6	57-6	57.8	57.7	57.2	56.465	55.0	$55 \cdot 2$	55.7	56.4	57\%	57	57.2	57.2	57.3	57.4	57.5	57.6	57.6	57.0
October	$1 \cdot 3$	$61 \cdot 4$	614	$61 \cdot 4$	61.4	61.4	61.5	81.6	$61 \cdot 1$	$60 \cdot 2$	59.4588	58.8	59.0	59.3	$59 \cdot 8$	$60 \cdot 2$	60.5	$60 \cdot 8$	60.8	60.9	61.1	61.2	61.4	61.4	60.6
November	61.8	(i19	61.8	61.8	61%	61.8	61.8	61.6	${ }_{61} 3$	60.9	00.8 60.8	$60 \cdot 9$	60.7	60.6	60%	61.0	$61 \cdot 2$	61-4	$61 \cdot 5$	61.6	617	$61 \cdot 9$	61.9	61.9	61.4
December	82.4	6%	62.4	$62 \cdot 4$	62.4	024	6\% 4	(32.2	62.1	61.9	$61.8 \quad 61 \%$	61.5	61.2	81.0	61.2	61	61.8	$62 \cdot 1$	$62 \cdot 1$	62.2	62.2	$62 \cdot 3$	623	62.4	62.0
Means	59.5	59\%	59\%	59.5	59.5	50.5	$55 \cdot 5$	59.5	512	$58 \cdot 6$	$58.1 \quad 578$	578	58.0	58.2	58.6	$58 \cdot 9$	59.0	59.1	59.1	59.2	593	59.4	59.5	58.5	59.0

Summer.																										
April .	$58 \cdot 4$	58.4	$58 \cdot 4$	$58 \cdot 3$	$58 \cdot 3$	58\%	58.5	$58 \cdot 6$	58.0	57.2	56.6	$55 \cdot 8$	$55 \cdot 6$	56.0	$56 \cdot 7$	57.4	58.1	58.2	58•1	$58 \cdot 1$	58.2	58.3	58.4	58.4	58.4	5i-8
May	59.0	$58 \cdot 9$	58.9	58.9	58.9	$58 \cdot 9$	$59 \cdot 2$	59.0	58.4	57.8	$57 \cdot 2$	56.9	56.9	57.4	57:8	58.4	58.8	58.7	58.7	58.7	$58 \cdot 8$	58.9	59.0	59.0	59.0	$58 \cdot 5$
June	59.5	59.5	59.5	59.5	59.5	59.6	$59 \cdot 9$	59.8	59.4	58.9	58/3	58.1	58.0	58.4	$58 \cdot 9$	$59 \cdot 4$	59.7	59.6	$59 \cdot 4$	59.4	59.5	59.5	59.5	59.6	59.6	59.3
Juls	$60 \cdot 1$	$60 \cdot 1$	$60 \cdot 1$	$60 \cdot 1$	601	$60 \cdot 1$	60.5	$60 \cdot 5$	600	$59 \cdot 4$	$58 \cdot 8$	$58 \cdot 5$	58.6	58.9	59.3	59.7	$60 \cdot 1$	$60 \cdot 2$	$60 \cdot 0$	59.9	60.0	60.1	60.1	60.1	60.1	59.8
Auguat	$60 \cdot 5$	605	60%	61:5	60.5	$60 \cdot 6$	$80 \cdot 8$	60.5	59.7	58.8	$58 \cdot 4$	$58 \cdot 1$	58.2	$58 \cdot 6$	59.1	59.7	$60 \cdot 1$	$60 \cdot 1$	$60 \cdot 1$	60.2	$60 \cdot 3$	60\%	$60 \cdot 4$	$60 \cdot 5$	60.5	59.9
September	$60 \cdot 9$	$60 \cdot 9$	$60 \cdot 9$	$66 \cdot 9$	609	61.0	00.2	$60 \cdot 9$	60.0	59.0	58.4	$57 \cdot 9$	58.0	58.5	5931	59.8	60.3	60.4	$60 \cdot 3$	60.4	$60 \cdot 5$	60.7	60.7	$60 \cdot 8$	$60 \cdot 9$	60.1
Msans	59.7	59.7	59.7	59.7	59\%	59.8	60.0	59.9	$59 \cdot 3$	58.5	58.0	57.6	$57 \cdot 6$	58.0	58.5	$59 \cdot 1$	59.5	59.5	59.4	59.5	59.6	'59.7	59.7	59.7	59.8	59.2

Diurnal Inequality of the Dip at Kodaikānal as deduced from the preceding $T_{a b l e}$.

\footnotetext{
Summer

April	$\because+0.6$	+0.6	$+0.6$	+00	$+0.5$	+ 0.6	+1.7	+ 0.8	+0.2	-0.6	-1.2	-20	-2.2	$-1 \cdot 8$	$-1 \cdot 1$	-0.4	$+0 \cdot 3$	+0.4	$+0.3$	+0.3	$+0.4$	+0.5	$+0.6$	+0.6	$+0.6$
May	- +0. 5	$+0 \cdot 4$	+0.4	$+0 \cdot 1$	$+0.4$	$+0.4$	$+0.7$	$+0.5$	-0.1	-0.7	-1.3	-1.6	$-1 \cdot 6$	$-1 \cdot 1$	-0.7	-0.1	+0.3	+0.2	$+0 \cdot 2$	$+0 \cdot 2$	$+0 \cdot 3$	+0.4	$+0.5$	$+0.5$	+0.5
June	- +0.2	$+0 \cdot 2$	$+0.2$	$+4.2$	$+0.2$	$+0.3$	$+0.6$	$+0 \cdot 5$	$+0.1$	-0.4	-1.0	-1.2	$-1 \cdot 3$	-0.9	-0.4	+0.1	$+0.4$	+0:3	+0.1	$+0.1$	$+0 \cdot 2$	$+0 \cdot 2$	$+0 \cdot 2$	+0.3	$+0 \cdot 3$
July	- +0.3	+03	+0.3	+0.3	$+0.3$	+0.3	$+0.7$	$+0.7$	$+0 \cdot 2$	-0.4	-1.0	-1.3	$-1 \cdot 2$	-0.9	-0.5	-0.1	+0.9	+0.4	$+0 \cdot 2$	+0.1	$+0 \cdot 2$	+0.3	$+0.3$	$+0.3$	$+0.3$
August	. +0.6	+0.6	$+0.6$	+0.6	$+0.6$	+6:7	+ 0.9	$+0.6$	-0.2	$-1 \cdot 1$	-1.5	$-1 \cdot 8$	-1.7	-3.3	-0.8	-0.2	+0.2	$+0 \cdot 2$	+0.2	+0.3	+0.4	$+0.5$	$+0.5$	$+0.6$	+0.6
September	$\pm 0 \cdot 8$	+0.3	+0.3	+0.8	+0.8	+1) 9	+1.1	$+0.8$	$-\cdot \cdot 1$	$-1 \cdot 1$	-1.7	-2.2	-2.]	-1.6	-0.9	-0.3	+0.2	+0.3	$+0.2$	$+0.3$	+0.4	$+0.6$	$+0^{\circ} 6$	+0.7	+0.8
Menns	. +0.5	+0.	$+0.5$	+05	+0.5	+0.6	$+0.8$	+0.7	+0.1	-0.7	-1.2	$-1 \cdot 6$	-1.6	-1.2	-0.7	-0.1	+0.3	+03	+0.2	+0.3	$+0 \cdot 4$	+0.5	+0.5	$+0 \cdot 5$	$+06$

COMPUTING AND TECHNICAL OFFICES.

By Mr, J. deGranff Hunter, M. A.
Towards the eud of 1912 it was decided by the Meteorological Department to dispense with Dehra Dūn as a meteorological station. As the only remaining objeot in continuiug observations was to accumulate data which might be useful for Survey purposes, a change in programme was made beginning fromJanuary 1st, 1913. Observations are now taken at 2 p.m. (standard time) instead of at 10 a.m. and 4 P.m. (local time) as was formerly done: and simultaneous observations have been carried out, by kind consent of the Superintendent, Northern Circle, in his office at Mussoorie, It is hoped that these simultaneous readings will throw light on turrestrial refraction and its annual chavge.

The present seems a suitable time for publishing the results obtained previous to the time of change of programme.

Tue Omori Seismograph has now been in good working order at Dehra since July 1912. A statement of the earthquakes recorded by it with the distance of the epicentre in each case when this could be satisfactorily deduced is given in the Table I. This is followed by two Tables (II and III) dealing with Solar Photography at Dehra Dūn. Tables IV and V give data regarding wind velocity. The velocity is given by the number of miles of wind which pass per hour. In Table VI the records of the underground thermometers are given. These readings of wind velocity and underground temperature have now been discontinued. Table VII gives some meteorological records obtained at Dehra year by year from 1899-00 to 1910-11.

TABLE I.
Seismograph Records tuken at Dehra Dūn, 1912-13.

No.	Date.	Time of commencement. (Stnodard time)		Estimated distance of cpiceutre. (Miles)	Duration.		Bruabig,
		hrs,	mt-.		hrs.	nots.	
1	7th July 1912	13	50	4,600	5	00	Repented shocks of great intensity.
2	30th September 1912	2	32	1,200	2	00	Small.
3	7th November 1912	13	23	5,600	1	15	Distant shock of medium in. tonsity.
4	15 th , "	22	51	200	0	3	Slight local shock.
5	29th " ,	2	28	100	0	22	Mediun.
${ }^{\circ}$	\}	\} 5	35	3,800	0	35	Small.
7	$\} 2 \mathrm{th}$ December 1012	23	44	4,000	0	30	Small.
8	11th Janunry 1913	18	65	3,300	1	00	Medium.
9	19th " .	22	41	2,300	1	20	Medium.
10	20th February 1913	14	395	;	0	28	Simall.
11	2 thl " "	7	29.5	460	0	12	Slight.
12)	11	19	200	0	1	Slight.
1.3	Gth March 1913) 11	25.5	300	0	2	Slight.
14)	16	335	?	0	42	Shock of great inteusity.

TABLE I-concld.
Seismograph Records taken at Dehra Dūn, 1912-13—concld.

No,	Date.	Time of commence-ment.(Etandard time)		Etimated distance of epicentre. (Miles)	Duration,		Reximig.
		hrs.	mits.		hrs.	mts.	
15	11th March 191:	0	38.5	200	0	12	Slight.
16	14th "	14	23.5	3,500	1	50	Great.
17	28th	22	42	350	0	6	Slight.
18	9th April 1913	11	3.5	2500	0	5	Slight.
19	14th ."	19	22	?	0	98	Smell.
20	15th "	1	34	400	0	12	Slight.
21	25th " \quad	23	34	2,500	1	50	Medium.
22	15th May 1913	7	19	?	0	1	Slight local shock.
23	30th ., "	17	29	?	2	00	Medium.
24	26th J nue 1913	10	$45 \cdot 5$	4,500	2	50	Great.
25	27th , "	5	00	100	0	5	Local shock of moderate intensity.
26	1st August 1913	22	$50 \cdot 5$	3,840	1	5	Medium,
27	6th ",	23	39	1 CO	0	2	Slight local shock.
28	7th , "	4	3	6,300	2	0	Distant shock of great intensity.
29	21st " "	10	33	200	0	7	Local shock of moderate in. tensity.
30		2	5	100	0	3	Slight local shock.
31	\} ${ }^{\text {ard }}$ Septeaber	3	26	100	0	2	Slight.

Nore.-" p " indicates that the distances could not be measured as the changes in the oharacter of the tremors were lll-defined.

Solar Photography.

TAbLE 11.

Showing the Number and Charactrr of Negatives.

Yean,	NUMDER OF DAYS,				Number oh negatives,								Total.		Nutifig of WOBEING DATB fifer PheTOHBNA WEBE	
	When vegatives were taten.	Failitiga,		B E 0			Sola	$1{ }^{\text {Pr }}$	OME							
		From bad weather.	From various cau6es.		Spris and Fileulir.				Facule only.		None,		$8{ }^{\prime \prime}$	12"	Visible.	Abecrit
					$8^{\prime \prime}$	12"	${ }^{\prime \prime}$				8"	12 ${ }^{\prime \prime}$				
1800-1000	303	62	\cdots	305	297		...		230	...	0	...	633	...	303	...
1800-1901	308	65	2	36.5	127	0	...		322	\cdots	75	.',	6.44	0	262	40
1901-1902	314	49	2	386	1:30		\cdots	...	144		250	\cdots	524	\cdots	101	153
1402-1003	209	86	...	3155	283	2	10		123	...	62	...	478	2	202	37
1903-1004	1308	61	...	300	456	11	\cdots				\ldots	\cdots	468	10	305	..'
1004-1005	313	52	...	365	61):	14			2		605	18	313	...
1006-1008	303	65	\cdots	385	478	50				\ldots	\ldots	...	478	50	300	'..
1000-1007	- 320	38	\ldots	305	5414	311			30	3	638	44	320	...
1007-1800	340	20	...	:160	505	0		.	2		2	...	580	0	330	1
1000-1000	- 938	29	\ldots	385	66!	10		.	21	580	18	336	...
1009.1910	338	27	...	388	471	16			67		7	...	567	15	331	7
1010-1011	328	37	...	305	247				20.4	10	64	1	677	95	289	30
1011-19:9	$\mathbf{3 9 8}$	30		300						18	200	:0	003	56	220	116

TABLE III.
Showing the Visibility of the Sun at Den'ru Dun and Greenvich.

Wind Velocity．
TABLE IV．
Mean Velocity in miles of the winds at Dehra Dün during the twelve year＇s 1899－1911， for each month of the year．

Yeas．	苞	$\begin{aligned} & \text { 妄 } \\ & \text { 員 } \\ & \text { 吕 } \end{aligned}$				$\begin{aligned} & \text { 它 } \\ & \text { 気 } \end{aligned}$	完	$\dot{\Delta}$	＊	$\stackrel{\square}{3}$		
$1800-1000$	$1 \cdot 55$	$1 \cdot 35$	130	$2 \cdot 16$	1.07	$1 \cdot 98$	2．48	$2 \cdot 44$	$1 \cdot 80$	1.22	0.87	0．06
1000－01	$0 \cdot 81$	0.63	$0 \cdot 80$	0.87	$0 \cdot 68$	$1 \cdot 00$	$2 \cdot 08$	1.03	2.08	$1 \cdot 35$	$1 \cdot 05$	0．78
1901－02．	0.47	0.35	0.13	0.20	1.30	3.34	$2 \cdot 66$	2＇68	$2 \cdot 18$	1×52	0.04	0＇77
1008 －09	0.74	0.59	0.50	0.80	1.08	1.41	1.63	$1 \cdot 08$	$2 \cdot 25$	1.54	1.14	0.00
1009－04	1.17	1\％35	$1 \cdot 16$	1.01	1.27	$1 \cdot 51$	1.90	$2 \cdot 32$	1.02	0.65	0.49	0＇39．
1004－05	0.70	0.81	0.60	0.66	1.21	$1 \cdot 55$	$2 \cdot 16$	1.40	$1 \cdot 76$	1 105	1．04	1005
1806－00	$1 \cdot 23$	1.55	0.80	0.80	$1 \cdot 47$	$2 \cdot 12$	2．69	$2 \cdot 33$	$2{ }^{2} 18$	$1 \cdot 35$	$\cdot 1 \cdot 94$	$1 \cdot 11$
1006－07	$1 \cdot 97$	0.88	$0 \cdot 30$	0.83	1－55	$2 \cdot 14$	$2 \cdot 12$	$2 \cdot 91$	$2 \cdot 51$	1.50	$\cdot 1 \cdot 17$	$1 \cdot 98$
1807－08	$1 \cdot 10$	1.08	0.63	1.00	$1 \cdot 47$	$1 \cdot 84$	$2 \cdot 37$	2.06	$1 \cdot 87$	0.05	0.72	C． 01.
1003－00	1.03	$1 \cdot 01$	0.71	0.95	$1 \cdot 17$	．．．	．．＇	$1 \cdot 68$	$1 \cdot 67$	$0 \cdot 81$	0＇62	0.97 ：
1000－10	．．．	0.8	0.6	$0 \cdot 0$	$1 \cdot 9$	$2 \cdot 2$	$2 \cdot 0$	$2 \cdot 0$	1.0	14	1－1	0.0
1010－11 ．．．	0.0	$1 \cdot 0$	$1 \cdot 1$	$1 \cdot 6$	1.0	$2 \cdot 1$	$2 \cdot 1$	20	$1 \cdot 2$	$1 \cdot 0$	$0 \cdot 8$	$0 \cdot 8$
1011－12 ．．		railab										

TABLE V ．
Mean Felocity in miles of the winds at Dehra Dün during the twelve years 1899－1911，for each hour of the day．

Table VI．

Mean Monthly Readings of earth thermometers，taken at the Office of the Trigonometrical Survey，Dehra Dūn．

	Year．		$\begin{aligned} & \dot{4} \\ & \text { O} \\ & \text { O} \\ & \hline 0 \end{aligned}$	$\begin{aligned} & \dot{\Phi} \\ & \text { 崱 } \\ & \text { 品 } \end{aligned}$		\dot{H} 免 品			若	宊	$\begin{aligned} & \text { シ } \\ & \text { 吕 } \end{aligned}$	官	忘	
$25 \cdot 6$														
	1899－1900	－．	76：90	77．03	70＇91	76：70	75－88	74：50	$73 \cdot 80$	$73 \cdot 80$	74：32	75＇21	76．53	77.98
	1900－1901	－．	$78 \cdot 42$	7814	77．64	76.84	$75 \cdot 57$	74.17	73.28	$73 \cdot 2 \mathrm{i}$	$73 \cdot 80$	74．65	76．56	$78 \cdot 38$
	1901－1902	－	78.16	77.68	77.32	76．90	76．26	75：70	75.10	74：90	75.02	75－45	76．28	76.91
	1902－1903		77．42	77．38	77.32	$76 \cdot 82$	76.22	75.45	74.87	74：40	74．49	74＇80	76.01	76：69
	1903－1904		7758	$77 \cdot 60$	78.53	7717	76.54	75．90	$75 \cdot 13$	7487	74，88	75－47	76．96	77.61
	1904－1905	．	77.54	$77 \cdot 60$	77.41	76.87	$76 \cdot 21$	75.27	74.25	73.61	73.45	$73 \cdot 86$	74．52	75：52
	1905－1906	．．	76.02	76.33	76．42	7620	75.63	71－86	7121	73：73	73.90	74：80	76－56	77＇63
	1906－1907	－	77.91	77.71	$77 \cdot 65$	77.28	76．72	76．00	75.18	74，64	74，40	74.67	75.46	76－50
	1907－1908	．．	76．96	77.22	$77 \cdot 28$	77.01	76．49	75．85	75.04	74.83	74.83	75.54	7756	78.39
	1908－1909		$78 \cdot 42$	78.40	$78 \cdot 15$	$77 \cdot 84$	$77 \cdot 24$	76.55	7591	75.54	75.6	76.14	77．96	78.62
	1909－1910		75.26	75.97	77＇80	77.35	76.77	76.00	$75 \cdot 31$	7484！	74.90	7534	77.36	78.22
	1910－1911	－．	78.12	7784	$77 \cdot 58$	77.00	76.24	75．26	74：36	73.87	73.80	7416	74．84	75.95
	1911－1912		76.50	76.66	76.60	$76 \cdot 15$	$75 \cdot 49$	74．65	74．15	73.84	73.92	7＋98	75：52	71．03
12.8 \｛	1899－1900	．	79：24	78.48	76.92	75．14	73.01	71.72	71.93	73.55	7590	$78 \cdot 37$	79.57	$80 \cdot 13$
	1900－1901		79.60	$78 \cdot 31$	76.61	$73 \cdot 92$	71－22	$69 \cdot 92$	70．52	7283	$75 \cdot 42$	78.05	80.04	80．54
	1901－1902		79.83	78.89	7713	74：93	73.21	$72 \cdot 64$	73.43	74：87	$72 \cdot 00$	78：50	． 7970	79．94
	19（2－1903		79.63	76.36	76．56	$74 \cdot 24$	$72 \cdot 36$	$71 \cdot 94$	71＇58	73.56	76．11	78.17	80.07	80．41
	1903－1904		80.11	79.05	76.78	74．30	72.09	$71 \cdot 61$	71．98	7420	76.38	78.96	79．44	79.63
	1904－1905		$79 \cdot 40$	$78 \cdot 64$	76．73	7424	71.76	69.41	$69 \cdot 26$	71.27	74.03	76：32	$78 \cdot 10$	79.07
	1905－1906		$78 \cdot 83$	78.13	76：50	7424	72.15	70.79	7071	73．E2	75.66	$77 \cdot 99$	80.19	$80 \cdot 06$
	1906－1907		79.75	79.00	$77 \cdot 59$	$75 \cdot 54$	73．63	71．97	71．59	$73 \cdot 87$	75.10	$77 \cdot 13$	$76 \cdot 90$	79．95
	1907－1908		79.96	79.44	77.09	75.62	$73 \cdot 42$	72.08	72－47	74＇41	76.75	78：\％	$80 \cdot 45$	$80 \cdot 45$
	1908－19n9		80.36	79.73	$78 \cdot 13$	75.92	7393	7287	$73 \cdot 37$	74．84	76.86	$79 \cdot 10$	80．s0	$80^{\prime} 42$
	1909－1910	．	80．22	79.61	$78 \cdot 21$	$75 \cdot 71$	； $73 \cdot 59$	72．43	72．86	$74 . \mathrm{C4}$	76.82	$78 \cdot 59$	80．3F	80.31
	1910－1911		8002	79.02	$77 \cdot 20$	74．76	$72 \cdot 16$	70.91	7088	72.93	75.57	77．33	78.92	$79 \cdot 96$
	1911－1912		79.60	78.59	76.06	73.49	71．63	71.08	71.75	73.57	75.80	$77 \cdot 81$	79776	$80 \cdot 41$
6.4 \｛	1899－1900		$80 \cdot 52$	76．86	72.68	68.53	f5 83	67．70	72.07	76＇30	80.51	81.99	$81 \cdot 86$	81.06
	1900－1901		79.34	76.51	72：92	$67 \cdot 37$	$65 \cdot 52$	66．04	$70 \cdot 4$	$75 \cdot 67$	$80 \cdot 34$	82.81	81.93	81.02
	1001－1902		80.01	77.53	73.27	$69 \cdot 17$	68.58	70.67	7435	$78 \cdot 20$	81.95	82.24	82.03	81.46
	1902－1903		79.99	76.31	72.40	68.25	66.46	67＇64	71.06	77.08	$81 \cdot 95$	83.56	89.48	81.8
	1909－1904	－．	81.00	77.42	73.36	68.62	66.92	68.06	71.92	77.80	80.89	81.58	80.66	80．82
	1904－1905		79.74	76.90	72.42	67.92	64．06	63.57	67.92	74.27	79.21	80.91	81．45	81.6
	1005－1006		80.12	$77 \cdot 95$	73.05	$68 \cdot 11$	66．52	$65 \cdot 86$	$70 \cdot 29$	：6．98	8174	82.07	81.61	80.93
	1906－1907	． ，	80.53	78.06	74.51	$70 \cdot 19$	57.68	67•36	$70 \cdot 10$	76.56	81.23	93.68	$82 \cdot 51$	82.78
1	1907－1908	．．	$82 \cdot 35$	78.98	$73 \cdot 60$	$68 \cdot 03$	66.51	68.04	73.69	79＇49	83.63	82.84	81.86	$81 \cdot 82$
	1908－1909	－	81：56	78－20	$73 \cdot 56$	$69 \cdot 39$	66.79	69.11	74．39	7796	82：20	82.45	81.77	81.38
	1909－1910	．\cdot	8129	78.75	73＇70	68.63	$67 \cdot 17$	$68 \cdot 46$	74×24	78.76	82.62	82.71	81．50	81.38
	1910－1911		$80 \cdot 18$	76.84	72＇31	67．57	65．39	66：99	71.01	$77 \cdot 97$	81.96	82.73	83.23	81.97
	1911－191s		$80 \cdot 42$	75.99	70.09	60．77	6635	68．36	72.18	77．90	81.90	82． 96	89.45	82：25

Table VI-concld.

Mean Mcathly Readings of earth thermometers, taken at the Office of the Trigonometrical Survey, Dehra $D_{\bar{u} n-c o n c l d . ~}^{\text {. }}$

TABLE VII.

IABLE VII-conld.
Monthly Miteorological Resultuy of Observations taken at the Ofict of the Trigonometrical Survey, Dehra Dün-contd. ${ }^{\text {• }}$

咸			

TABLE VII-contd
Montaly Meteorological Results of Observations taken at the Office of the Mrigonometrical Survey, Dehra Dün-contd.

bahometer rediced to 39 fah.						hygrometer.		thermometer.				bain.		wind.	clouts.	
At 10 a.4.			at 9 p.a.			$\begin{array}{\|l\|l\|} \hline 10 \text { s.x. } \\ \text { Monthly } \\ \text { muand } \\ \text { bumidity. } \end{array}$		Dey beid.			WETBoLs,		Fall in inches.	Most Irequent direction.	$10 \stackrel{\Delta t}{\Delta t}$	
Highent.	Lomot.	$\underset{\substack{\text { Montbly } \\ \text { mean. }}}{\text { a }}$	Highcst.	Lowest.	$\begin{gathered} \text { Mouthly } \\ \text { menan. } \end{gathered}$			$\begin{array}{\|c} \text { Higheest } \\ \text { miaximam } \\ \text { in ulr. } \end{array}$	$\begin{gathered} \text { Lowest } \\ \text { minloun } \\ \text { in alf. } \end{gathered}$	$\begin{gathered} \text { Montuly } \\ \text { inen } \text { in } \\ \text { int. } \end{gathered}$	$\begin{aligned} & \text { Lowest } \\ & \text { mininicame. } \end{aligned}$					
Inches.	Inches.	I aches.	Inches.	Inches.	Inches.	-	-	-	-	-	-					
27.775	27.590	27.864	$27 \cdot 647$	27.508	27.577	62	40	$90 \cdot 3$	45.8	65.6	$44 \cdot 2$	9	$3 \cdot 46$	w.'	$3 \cdot 5$	4.0
$27 \cdot 649$	$27 \cdot 328$	27.506	27.583	27.219	$27 \cdot 410$	31	20	100.4	56.1	78.1	48.7	2	$0 \cdot 19$	w.	19	2.8
27.617	27.407	27.496	27.508	27.287	27.393	36	32	100.9	58.6	80.7	53.7	7	200	w.	3.6	4.0
27.506	$27 \cdot 205$	27.356	$27 \cdot 116$	27.152	27.273	55	48	102.3	$66 \cdot 1$	82.7	61.7	10	3.74	W.	6.0	6.9
27.452	$27 \because 85$	27.360	27.384	27.183	27.282	87	81	91.1	$68 \cdot 3$	76.1	65%	29	34.62	Calm, w.	$8 \cdot 6$	8.8
27.499	27-325	27.426	$27 \cdot 463$	27.255	27.352	86	82	87.7	69.5	76.6	$68 \cdot 3$	26	31.92	Calm	8.7	$8 \cdot 4$
27.770	$27 \cdot 405$	27.561	$27 \cdot 671$	27.355	27.480	69	64	88.1	61.1	74.7	$56 \cdot 1$	13	6.03	Calm	3.2	$3 \cdot 4$
27.79-6	27.575	27.698	27.724	27.514	27.619	52	45	86.0	51.0	$70 \cdot 2$	$48 \cdot 6$	1	0.53	Calm	0.5	1.2
27.959	27.717	27-806	27.870	27.637	27.731	55	47	82.1	$44 \cdot 6$	61.6	$42 \cdot 2$	3	0.92	Calm	$1 \cdot 3$	$2 \cdot 4$
28.050	27.694	- 27.853	27.940	27.619	27.770	67	56	74.3	$41 \cdot 1$	56.5	$39 \cdot 3$	4	2.02	Calm	1.8	$3 \cdot 9$
28.085	27.715	$27 \cdot 810$	$27 \cdot 916$	27.589	27.720	73	62	$69 \cdot 2$	31.9	51.5	$30 \cdot 3$	7	3.37	Calm	$5 \cdot 5$	$6 \cdot 3$
27.873	27.665	27.782	27.792	27.607	27.710	64	55	$69 \cdot 1$	$30 \cdot 1$	$48 \cdot 5$	$28 \cdot 4$	6	3.82	w.		76
27.951	27-559	27.679	27.881	27-424	27.599	53	43	81.0	$41 \cdot 1$	60.9	$38 \cdot 8$	4	1.94	S. W.	6.0	6.6
27.737	$27 \cdot 512$	27.633	27.642	$27 \cdot 423$	27.551°	31	22	94.4	47.0	72-4	$41 \cdot 6$	1	0.20	s. w.		2%

Mon/hly Meteorological Results of Observations taken at the Office of the Trigonometrical Surrey, Dehra Dūn..$- \operatorname{contd}$.

TABLE VII-concld.
Monthly Meteorolugical Results of Obscrvations talicn at the Office of the Trigonometrical $\mathcal{S}_{u} \tau v r y$, Dehra Dün--concld.

nd Sonth.							HY'GOMETEK.		thenmometre.				RaIN.			clo: T ,	
	As 10 . \ldots.			Аг $4 . . \mathrm{x}$							\mid			$\underset{\text { Pall in }}{\substack{\text { Pinctame }}}$		At 10 п...	At4r.m.
	Hiehest.	Lowrst.		Hiethest.	Lowest.	$\sum_{\substack{\text { Moolth, } \\ \text { mean. }}}$											
	Incles.	Inclues.	Iuctes.	Inches.	1 Incese.	Inches.	-	-	-	-	-						
	${ }^{27472}$	${ }^{27.313}$	-r:404	27.334	27.223	27.303	57	49	1046	67.9	42.1	${ }^{62 \cdot 6}$	9	5.13	S $52^{\circ} \mathrm{W}$	48	6.0
	27.522	27.180	27.395	$2 \mathrm{~T} \cdot 4.18$	27-108	${ }^{37} \cdot 324$	83	${ }^{53}$	$89 \cdot 3$	$70 \cdot 4$	77.4	69.2	28	34:35	S $27^{\circ} \mathrm{W}$	8.7	8.7
.	27.645	${ }^{27.235}$	27:3n	${ }^{27} 575$	$27 \cdot 217$	$27 \cdot 348$	85	85	88.5	69.5	76.5	68.1	26	47.03	S $30^{\circ} \mathrm{m}$	8.7	8.5
.	27.650	27.347	$27 \cdot 496$	27.541	${ }^{27} 263$	27.405	81	79	$90 \cdot 3$	66.5	76.5	64.3	15	12.31	S55 ${ }^{\circ} \mathrm{W}$	5.7	7.8
.	27.815	27.519	27:681	27.742	$27^{2} \cdot 431$	27.595	62	59	86.2	$55 \cdot 3$	70.0	51.4	3	5.24	$\mathrm{s} 31^{\circ} \mathrm{W}$	1.3	2.5
.	27.836	27.691	27.759	27.783	27.606	27.680	52	48	78.7	$42 \cdot 3$	${ }_{61} 1.9$	40.5	0	0	S $80^{\circ} \mathrm{W}$	0.7	17
	$27 \cdot 918$	27.686	27.797	27/821	27.614	${ }^{27} 7722$	52	47	${ }^{751}$	${ }^{37} 4$	56.2	36.4	1	0.23	S $76^{\circ} \mathrm{W}$	3.1	4.0
191.																	
. .	27.975	$27 \cdot 433$	27.741	$27 \cdot 861$	27.369	27.660	67	59	74.4	34.0	54.8	${ }^{33} 1$	8	9.05	S $87^{\circ} \mathrm{W}$	5.8	6.5
- .	$27 \cdot 901$	27.642	27.771	27:811	27.591	27.694	53	41	81.1	36.2	59.2	$35 \cdot 8$	1	0.59	$\mathrm{s} 77^{\circ} \mathrm{W}$	${ }^{3.3}$	4.1
.	$27 \cdot 500$	27.532	27.675	27.717	${ }^{27} 459$	27.596	57	49	86.2	44.8	62.3	$43 \cdot 8$	10	719	${ }^{\mathrm{N}} 83^{\circ} \mathrm{W}$	${ }^{36}$	6.5
	${ }^{27} 775$	27.431	27.574	${ }^{27} 6.611$	27.363	27.493	${ }^{37}$	27	97.2	54.5	74.6	51.6	1	0.21	N $89^{\circ} \mathrm{W}$	$2 \cdot 1$	$2 \cdot 3$
.	27.666	27.310	${ }^{27} 462$	27:50n	27.230	27.369	30	${ }^{23}$	1020	$63 \cdot 4$	${ }^{\text {83. }} 3$	$53 \cdot 6$	1	${ }_{0} \cdot 16$	$\mathrm{Se}^{880^{\circ} \mathrm{W}}$	0.7	1.5
.	27.572	${ }^{27.2+9}$	27.390	${ }^{27 \cdot 461}$	27.172	${ }^{2} \cdot 3 \cdot 39$	66	62	96.2	67.8	79.8	$64 \cdot 4$	14	10.76	$658^{\circ} \mathrm{W}$	5.0	5.8
	27.514	27.203	27.350	27.436	$2 ¢-158$	27.278	${ }^{86}$	62	96.0	88.5	81.4	$65 \cdot 3$	7	4,39	S $35^{\circ} \mathrm{W}$	$4 \cdot 4$	$5 \cdot 6$
.	27.613	27.198	$27 \cdot 407$	27.524	27.158	27.321	82	80	90.1	67.7	77.7	$66 \cdot 0$	19	25:39	$\mathrm{S}^{24}{ }^{\circ} \mathrm{W}$	7.9	8.0
	${ }^{27} 638$	27.382	27.542	$22^{2} \cdot 584$	27-322	27.444	79	76	${ }_{57} 0$	63.9	$75 \cdot 3$	61.7	16	15.88	S $73^{\circ} \mathrm{W}$	${ }^{6.6}$	1.2

NOTE.

In reply to Mr. Hayden's paper on the relationship of the Himälayas to the Indo=Gangetic Plain and the Indian Peninsula.

By Lieut.-Cof. G. P. Lenox-Conyngilar, R.E.
Superintendent of the Trigonometrical Survey.

To the Records of the Geological Survey of India, Vol. XLIII, Part 2, Mr. Hayden contributes a paper on the relatiouship of the Himalaya to the Indo-Gangetic Plain and the Indian Peninsula. This paper begins with a study of the geological features of the outer Himalayan Ranges and then proceeds to discuss the theory put foward by Colonel Burrard in Professional Paper No. 12 of the Survey of India, to account for the results of the Geodetic observations made in the Indo-Gangetic Plain, and at stations situated in the Himālaya.

Mr. Hayden endeavours to show that these results are not inconsistent with the theory of Isostasy which has leen proved by Mr. J. F. Hayford to account, with a cousiderable degree of completeness, for the deflections of the plumb-line and abnormalities of gravity that have been observed in the United States of America.

In his discussion Mr. Hayden makes use of data supplied to him by the Trigonometrical Survey and he acknowledges his indebtedness for the figures supplied with so much courtesy as almost to give the impression that he was working in co-operation with the Trigonometrical Survey Office, whence it might perhaps be inferred that his reasoning was accepted in that office. This, however, is not the case, and it is necessary to point out clearly that his conclusions are in the opinion of the prosent writer based on a misconception of the theory of Isostasy as a whole, and that even il the theory could be so modified as to make it agree with the idea that he scems to have formed, nevertheless the results that he puts forward, as a possille explanation of the observed deflections of the plumb-line, are mutually destructive and do not rest on any consistent theory of the distribution of matter in the earth's crust.

To begin with the theory of Isostasy as a whole. On page 151 Mr . Hayden says--" If the conditions of equilibrium in India are different from those in America there is no valid reason for the tacit assumption that, in a heterogeneous body like the carth, isostatic compensation will occur at the same depth everywhere." Now on poge 145 Mr . Hayden quotes Mr. Hayford's definition of the depth of compensation ; it runs as follows:- "Let the depth within which the isostatic compensation is complete be called the depth of compensation. At and below this depth the conditions as to stress of any element of mess is isostatic; that is, any clement of mass is subject to equal pressure from all directions as if it were a portion of a perfect fluid." By this definition, since there is no tendency for a particle situated in the surface of compensation to move in any direction, that surface is a level or equipotential surface; also since all elements of mass "at and below" this surface are in a condition of hydrostatic equilibrium it follows either that the density
of all matter below this surface is uniform or that the matter is arranged in concentric layers of uniform density, the density being everymhere the sane function of the depth below the surface of compensation. The form of a rotating mass of such a structure is an ellipsoid of revolution, and we thus see that the surface of compensation must be of this form and that therefore its depth below the surface of the sea, neglecting the small effects of the slight dissimilarities of ellipsoids at different moan distances from the earth's centre, is neces. sarily invariable.

If a calculation similar to that made by Mr. Hayford for the United Stites, were made for India, and led to a significantly different depth of compensation, the inevitable conclusion would be that the theory of Isostasy did not in reality represent the distribution of mass in the earth's crust, and that Mr . Hayford solution had merely indicated that depth which made the hest of a mrong hypothesis; just as part of a curve drawn according to one law may, by a suitable adjustment of the constants, be made to fit fairly well to a number of points plotted according to some other law, especially when the plotting is not very precise and the points only represent a small part of the complete curve. We are therefore obliged to deny Mr. Hayden's statement and to assert that there is a valid reason for rejecting the idea of different depths of compensation for India and the U nited States of America.

Even, however, if it wer possible for the depth of compensation to rary from one part of the earth to another, Mr. Hayden makes a quite illegitimate use of the freedo'n he allows himself in this respect. Before going further it may be well to give an outline of the method by which the deflection of the plumb-line at any place is calculated from the topography of the surrounding country.

Contoured maps of the country having been procured, circles aro drawn on them with the ploce of observation as centre. The first circle has a radius of only a few yards but the radii incrense rapidly and for a complete investigation the outer circle must have a radius of over 2,0 :0 miles. These circles are divided up into compartments by radial lines according to certain rules, the increase of the radii and the division of the circles into compartments being so contrived thiat if the mean height above sea-level of any compartment is 100 feet, the attraction it exerts on a plumb-line suspended at the cen tre will be $0^{\prime \prime} 01$. It is to he observed that 100 feet of height above ses.level in any compartment has the same effect on the plumb-line, no matter where the compartment may be situated, so that all compartments have equal importance.

The first part of the process consists of estimating the height of each compartment and recording it; this boing done, to obtain the deflection that would result from the topography if there were no isostatic compensation, all that is necessary is to take out the algebraic sum of all the quantities so recorded,positive for hill masses to the south, negative for those to the north, and with signs reversed for negative heights, i.e., depths below sea-level, an allowance being made for the presence of the sea-water.

To chtain the effect of isostatic componsation we must return to the compartments and multiply the recorded height of each by a factor appropriate to the assumed depth of compensation. The algebraic sum of the products obtoined is the deflection which the torography and its compensation aro logether competent to preduce if the theory of Isostasy holds good.

In making this calculation all the topography within 2,000 miles of the station is taken into account, so that, even if a variation in the depth of compensation were possible, when once a lepth has been adopted in the investigation of the deflection at anv station, this depth cannot be departed from in the investigation of the deflection at any other station situated within a distance of 2,000 miles of the first, without involving us in an inconsistency ; for it is clearly inadmissible to suppose that there are two depths of compensation underlying the same area.

Turning again to Mr . Hayden's paper the following passage is found on page 157.--" Table 3 shows the deflection along certain lines including some of those selected by Colonel Burrard. I have not, however, restricted myself to a depth of 113.7 km ., but give figures also for $3 \div 9.8 \mathrm{~km}$. The result is instructive in that it indicates a possibility, not I think hitherto considered, that the depth of compensation under the Himalaya may be different from that under the rest of India, for it will be noticed that if these depths be assumed to be 329.8 km . and 113.7 km . respectively, the calculated difference of deflection is in four cases out of five almost exactly the same as the observed difference."

But in view of what has been said above it will be seen that this apparent agreement has no significance, for if 113.7 km . is the depth of compensation for the stations in the plains, that must also be the depth for the Himalayan stations, for the latter are not as a rule more than 100 miles distant from the former. The two calculations are based on incompatible assumptions and the results obtained cannot be used in support of any theory.

It would be possible to apply factors corresponding to different depths of compensation to the various compartments into which the zones surrounding the stations were divided in the analysis of the topography, and so to build up values for the deflections at the stations on an assumption of a sort of sloping floor of compensation, but this would be quite inconsistent with Mr . Hayford's theory of Isostasy, and to make such a calculation except in accordance with some definite and reasonable theory would be waste of time

On page 161 Mr . Hayden says, "If, lastly, we assume that complete compensation takes place at the surface throughout the whole area to the south of the Himàlaya the mean residual amounts to ouly $0^{\prime \prime} \cdot \dot{0} \cdot \mathrm{l}$. This is no doubt an improbable solution"

It is more than improbable, it is quite impossible. It means that the whole of the matter above sea-level has no density at all and is incapable of exerting any attraction.

The fact that the algelnaic sum of the residuals over this area is small is fortuitous and has very little signiticance. The smallness of the algelraic mean of the residuals is no criterion of the truth of the iypothesis on which the calculations have been hased: the true criterion is the smallness of the sum of the squares of the residuals In Professional Paper No. 13 the algebraic means of the residuals found in the several regions into which India was divided by Colonel Burrard,* were legitimately used by Major Crosthwait; for the object in vicw was to ascertain whether when the deflections are calculated according to Mr. Hayford's hypothesis there is any tendency for a persistence of sign to occur. If no such tendency had been found it would have been evidence that Mr. Hayford's theory had accounted for the peculiarities which had led Colonel Burrard to divide the country into regions each with its special

- Vol. XVIII of the Aerount of the Operations of the G. T. Survey.
characteristic. It was found, however, that there was a very strong tendency to persistence of sign, as the following figures show :-

Region No. ${ }^{\text {I }}$,	6 residuals.		All negative	Mean - 16
2,	4	"	2 positive, 2 negative	-2
3 ,	10	"	All positive	+ 8
4,	6	"	All positive	$+5$
5,	21	"	18 positive, 1 negative, 2 zero.	+ 4
7 ,	23	"	20 negative, ${ }^{2}$ positive, 1 zero	- 3
8 ,	17	"	12 negative, 3 positive, 2 zero.	-2
9 ,	14	'	8 positive, 4 negative, 2 zero	+1

The persistence of sign in the several regions is extremely remarkable and shows that the peculiarities of the regions are real and not to be explained by any general assumption of isostatic compensation.

APPENDIX.

LIST OF SURVEY OF INDIA PUBLICATIONS.

Onless otherwise stated the publications can be obtained from the Superintendent, Map Publications, 18 Wood Strest, Calcuita.

ACCOUNT OF THE OPERATIONS OF THE GREAT TRIGONOMETRICAL SURVEY OF IN DIA.

Obtainable from the Superintendent of the Trigonometrical Survey, Dehre Dūn, U. P.
Price Rupees 10.8 per volume, except where otherwise stated.
Folume
I. The Standards of Measure and the Base-Lines, also an Introductory Account of the early Operations of the Survey, during the period of $1800-1830$. By Colonel J. T. Walker, R.E., F.R.S., etc., etc., Superintendent of the Survey. Dehra Dūn, 1870 (out of print).
Do. II. History and General Description of the Principal Triangulation, and of its Reduction. By Colonel J. 1. Walker, C.B., R.E., F.R.S., etc., etc., Surveyor General of India and Superintendent of the Survey, and his Assistants. Dehra Dūn, 1879 (out of print).
Do.
III. The Principal Triangulation, the Base-Line Figures, the Karāchi Lorgitudinal, N. W. Himālaya, and the Great Indus Series of the North-West Quadrilateral. By Colonel J. T. Walker, R.E., F.R.S., etc., etc., Superintendent of the Trigonometrical Survey, and his Assistants. Deban Dūn, 1873 (out of print).
Do.
IV. The Principal Triangulation, the Great Are-Section $24^{\circ}-30^{\circ}$, Rahūn, Gurhāgarh and Jogi-Tila Meridional Series and the Sutlej Series of the North.West Quadrilateral. By Colonel J. T. Walker, R.E., F.R.S., etc., etc., Superintendent of the Trigonometrical Survey, and his Assistants. Dehra Dūu, 1876.
IVA. General Description of the Principal Triangulation of the Jodhpore and the Eastorn Sind Meridional Series of the North. West Quadrilateral, with the Details of their Reduction and the Final Results. Prepared in the Office of the Trigonometrical Branch, Survey of India, Colonel C. T. Haig, R.E., Officiating Deputy Surveyor Gencral in charge, and published under the orders of Colonel G. C. DePrée, S.C., Surveyor General of India. Dehra Dūn, 18886.
Do.
VI. The Principal Triangulation of the South-East Quadrilateral, including the Great Arc-Section 18° to 24°, the East Coast Series, the Calcutta and the Bider Longitudinal Series, tho Jabalpur and the Bilasppur Meridional Series, and the details of their Simultaneons Reduction. Prepared under the directions of Major-General J. T. Walker, C.B., R.E., F.R.S., etc., etc., Surveyor General of India and Superintendent of the Trigonometrical Survey. Dehra Dün, 1880 (out of print).
Do. VII. General Description of the Principal Triangulation of the Noth-East Quadrilateral, iucluding the Sinultaneous Reduction and the Details of five of the component Series, the North-East Longitudinal, the Budhon Meridional, the Rangir Meridional, the Amun Meridional, and the Karãa Meridional. Prepared under the directions of Lieutenant-General J. T. Walker, C.B., R.E., F.R.S., etc., etc., Surveyor General of India and Superintendent of the Trigonometrical Surney. Dehra Dūn, 1882.
VIII. Details of the Principal Triangulation of deven of the component Series of the North-East QuadriJateral, including the following Sories; the Gurwni Meridional, the Gora Meridional, the Huilãong Meridional, the Chendwñ Meridional, Noith Pānasnanth Meridional, the North Malūnchn Meridional, the Calcutta Meridional, the Eart Calcutta Longitudinal, the Brahmapūtra Meridional, the Eastern Frontier-Scetion 23° to 20°, and the Assam Longitudinal. Prepared under the dircctions of Lieutenant-General.J. T. Walker, C.B., R.E., F.R.S., etr., etc., Surveyor General of India and Superintondent of the Trigonometrical Survey. Dehra Dün, 1882.
IX. Electro-Telegraphic Longitude Operations executed during the rears 1875.77 and 1880-81, by Lieutenant-Colonel W. M. Campbell, R.E., nnd Major W. J. Heaviside, R.E. Prepared under the divections of Lieutenant-Gcneral J. T. Walker, C.B., R E., F.R.S., ctc., etc., Surveyor General of India and Superintendent of the Trigonometrical Survey. Dehra Dūn, 1883.
X. Electro-Telcgraphic Longitude Operations exceuted during the years 1881-89, 1889-89, and 1883-84, by Major G. Strahan, R.E., and Mayor W. J. Heaviside, R.E. Prepared under the directions of Colonel C. T. Haig, R.E., Deputy Surveyor Gencral, Trigonometrical Branch, and published under the orders of Colonel \boldsymbol{H}. R. Thuillier, R.E., Surveyor Gencral of India. Dehra Dūn, 1887.
XI. Astronomicul Observations for Latitude mado during the period 1805 to 1885, with a General Description of the Operations nod Final Results. Prepared under the directions of LieutenantColonel G. Strahan, R.E., Deputy Surreyor Gencral, Trigonometrical Branch, and published under the orders of Colonel'H. R. Thuillier, R.E., Surveyor Gencral of India. Dnhra Dūn, 1890.
XIII. Details of the Pridcipal Triangulation of five of the component Series of the Southern Trigon, including the following series; the South Konkın Const, the Mangalore Meridional, the Madras Meridional and Const, the South-East Coast, and the Madras Longitudinal. Prepared under the divertions of Licutenant-Colonel G. Strohan, R.E.., Dcpuly Surveyor General, Trigonometrical Branch, and pudlished under the orders of Colonil H. R. Zhuillier, R.E., Surveger Aeneral of India. Delira Dūn, 1890.
J_{0}.
XIV. General Description of the Principnl Trinngulation of the South-West Quadrilateral, including the Simultancous Reduction and the Detioils of its ecmfonent Series. Prepared under the directions of IV. H. Cole. Fiso. M.A.. Officiating Depuly Surveyor Genral. Triqunemetrical Branch, and

Volume $\quad X V$. Electro-Telegraphic Longitude Operations executed during the yeurs 1885-86, 1887-88, 1889-90 and 1891-92, and the Revised Results of Arcs contained in Volumes IX and X ; also the Simultaneous Reduction and the Finml Results of the whole of the Operations. Prepared under the directions of Colonel G. Strahan, R.E., Deputy Surveyor General, Zrigonometrical Branch, and published under the orders of Colonel H. R. Thuillier, R.E., Surveypr General of India. Dobra Dūı, 1893.

Do. XVI. Details of the Tidal Observations taken during the period frow 1873 to 1892 and a Description of the Methods of Reduction. Prepared under the directions of Major S. G. Burrard, R.E., Superintendent. Trigonometrical Surueys, and published under the orders of Colonel St. G. C. Gove, R.E., Surveyor General of Indic. Dehin Dūn, 1901.

1) \quad XVII. Electro-Telegraphic Longitude Operations executed during the years 1894-95-96. The Indo-Europenn ács from Karảchi to Greenwich. Prepared under the directions of Major S. G. Burrard, R.E., Superin. tendent, Tbigonometrical Surveys, and published under the orders of Colonel St. G. C. Gore, R.E., Surveyor General of India. Déhra Dūn, 1901.
$1)$
XVIII. Astronomical Observations for Latitude made during the period 1885 to 1905 and the Deduced Values of the Deflections of the Flumb-line. Prepared under the directions of Lieutenant-Colonel S. G. Burrard,

- R.E., F.R.S., Superintendent, Trigonometrical Sarveys, and published under the orders of Colonel
- F. B. Longe, R.E., Surveyor Gentrul of India. Dehra Dān, 1906.
XIX. Lerelling of Precision in Indin (1858 to 1909). By Colonel S. G. Burrard, R.E., F.R.S., Superinten. dent, Trigonometrical Surveys. Dehra Dūn, 1910.
Do.
XIXA. Descriptions and Heights of Bench-marks on the Southern Lines of Levelling. Prepared under the directions of Colonel S. G. Burravd, R.E., F.R.S., Superintendent, Trigonometrical Surveys. Delira Dūn, 1910. Price Rs. 5.

10.

XIXB. Desoriptions and Heights of Bench-marks on the Northern Lines of Levelling. Prepared under the dircctions of Colonel S. G. Burrard, R.E., F.R.S., Superintendent, Trigonomelvical Surveys. Dehra Dũn, 1910. Price Rs. 5.

SiNOPSES OF THE RESULTS OF THF OPERATIONS OF THE GREAT TRIGONOMETRICAL SURVEY OF INDIA, COMPRISING DESCRIPTIONS, CO-ORDINATES, ETC., OF THE PRINCIPAL AND SECONDARY STATIONS AND OTHER FIXED POINTS OF THE SEVERAL SERIES OF TRIANGLES.

Obtainable from the Superintendent of the Trigonometrical survey, Dehra Dun, U. P.
Price $R u p e e s 2$ per volume, except where otherwise stated.
Volume I. The Great Indus Series, or Series D of the North-West Quadrilaternl. By Colonel J. T. Walker, R.E., F.R.S., etc., etc., Superintendent of the Trigonometrical Survey, and his Assistants. Dehra Dãn, 1874.
Po.
II. The Grent Arc-Section $\mathbf{~} 4^{\circ}$ to 30°, or Series A of the North-West Quadrilateral. By Colonel J. T. Walker, R.E., F.R.S., etc., etc., Superintendent of the Survey, and his Assistants. Dehra Dün, 1874.
D.
III. The Karächi Longitudinal Series, or Series B of the North-West Qundrilateral. By Colonel J. T. Walker, R.E., F.R.S., etc., etc., Superintendent of the Survey, and his Assistants. Dehra Dün, 1874.

Do. IV. The Gurhägarh Neridional Series, or Series F of the Noith-West Quadrilateral. By Colonel J. 7. Walker, R.E., F.R.S., etc., etc., Superintendent of the Survey, and his Assistants. Dehṭa Dün, 1875.

Do.
V. The Rahūn Meridional Series, or Series E of the North-West Quadrilateral. By Colonel J. T. Walker, R.E., F.R.S., etc., etc., Superintendent of the Survey, and his Assistants. Dehra Dün, 1875.

Do. VI. The Jogi-Tila Meridional Series, or Sories (r, and the Sutlej Series, or Series H of the North-West Quadrilateral. By Colonel J. T. Tather, R.E., F.R.S., etc., etc., Superintendent of the Su'vey, and his Assistants. Dehra Dū̀, 1875.

Do.

Do. VIJA. The Jodhpore Meridional Series and the Eastern Sind Meridional Sories of the North-West Quadrilateral. Prepared in the Office of the Trigonometrical Branch, Survey of India, Colonel C. T. Haig, R.E., Deputy Surveyor General, in charge, and published under the orders of Colonel H. R. Thuillier, R.E., Surreyor General of India. Dehra Dūn, 1887.
Do. VIII. The Great Arc-Section 18° to 24°, or Series A of the South-East Quadrilateral. By Colonel J. T. Walker, C.B., R.E., F.R.S., etc., etc., Superintendent of the Survey, and his Assistants. Debia D̄̄n. 1878.
110.

Do.

Pro.

XII. The Calcutta Longiturinal Series, or Scries B of the South-Eant Quadrilateral. By Mrajor-General J. T. Walker. C'B., R.E., F.R.S., etr., etc., Surveyor General of India and Superintendent of the Survey, and his Assistants. Dehra Düu, 1880.
Dn. XIII. The Eant Coast Scries. or Neriza C of the South-Eat Qualrilateral. By Major-General J. T. Walher, C.B., R.E., F.R.S., etc., etr., Surveyor General of India and Superintendent of the Suruey, and hia Assistinte. Debra Dü̃, 1880 .
IN. KIILA. The Routh Pálaanāth Meridional Series and the South Maluncha Meridinal Series of the South. East Qnalrilateral. Prepared in the Offee of the Trigonomotrical B.anch, Surney of India, Colonel C. T. Haig. R.E., Officinting Depaly Surveyor General, in charge, and published under the orders of Colonel G. C. DePrie. S.C., Surveyor Geneval of India. Dehra Iñn, 1885.
Do. XIV. The Bulhom Meridimal Suriep, or Series J of the North-Eaat Quadrilataral. By Licutenait-General

Polumo

Du. XXII. The Assan Valley Triangulation, E. of Moridian 923, omanating from the Assam Longitudinal Serizs, or Series X of the North-East Quadrilateral. Prepared in the Office of the Trigonometrical Branch, Survey of India, Colonel G. Strahan, R.E., Deputy Surveyor General, in charge, and published under the orders of Colonel R. R. Thuillier, R.E., Surveyor Gencral of India. Praliminary Issue. Delura Dun, 189] (out of print).
Do. XXIII. The South Konkan Coast Series, or Series C of the Southern Trigon. Prepared in the Office of the Trigonometrical Branch, Survey of India, Colonel G. Strahan, R.E., Deputy Surveyor General, in whige, and pullished under the orders of Colonel H. R. Thuillier, R.E., Surveyor General of India. Dehrá Dūn, 1891.

Do. XXIV. The Mangalore Meridional Series, or Series D of the Sonthern Tripon. Prepared in the Office of the Trigonometrical Branch, Survey of India, Colonel G. Strahan, R.E., Deputy Surveyor General, in charge, and pablished under the orders of Colonel H. R. Thuillier, R.E., Surveyor General of India. Dehra Dūn, 1891.
Do.
XXV. The South-Fast Coast Series, or Sorios F of the Sonthern Trigon. Prepared in the Office of the Trigonometrical Branch, Survey of India, Colonel G. Shrahan, R.E., Deputy Surveyor General, in charge, and published under the orders of Colonel \boldsymbol{A}. R. Thuillier, R.E., Surveyor Geueral of India. Dolira Dūı, 1891.
Do. XXVI. The Bombay Longitudinal Scries, or Series B of the Southen Trigon. Prepared in the Office of the Trigonometrical Branch, Survey of India, Colonel G. Strahan, R.E., Deputy Surveyor General, in charge, and published under the orders of Colonel H. R. Thuillier, R.E., Surveyor General of India. Dehra Dūn, 1892.
Do. XXVII. The Madras Longitudinal Series, or Series G of the Southern Trigon. Prepared in the Office of the Trigonometrical Branch, Survey of India, Colonel G. Strahan, R.E., Deputy Surveyor General, in charge, and published under the orders of Colonel H. R. Thuillier, R.E., Surneyor General of India. Dehra Dūn, 1892.
Do. XXVIII. The Madras Meridiomai and Coast Series, or Series E of the Soutbern Trigon. Prepared ia the Offee of the Trigonometrical Branch, Survey of India, Coloncl G. Stwah in, R.E., Deputy Surveynu General, in charge, and published under the orders of Colonel H. R. Thuillitr, R.E., Surveyor General of India. Dehra Dūn, 1892.
Do. XXIX. The Great Arc Meridional Series-Section 8° to 18°, or Series d of the Southern Trigon. Prepared in the Office of the Trigonomelrical Branch, Survey of India, Lientenant-Colonel St. G. C. Gore, R.E., Superintendent, Trigonometrical Surveys, in charge, and published under the orders of Colonel G. Strahan, R.E., Surveyor General of India. Dehra Dūn, 1899.
Do. IXX. The Abu Meridional Series, or Series I, and the Gujurat Longitudinal Series, or Series \boldsymbol{K} of the South. West Quadrilateral. Prepared in the Office of the Trigonometrical Branch, Suvey of India, Colonel G. Strahan, R.E., Deputy Surveyor General. in charge, and published wnder the orders of Colonel \boldsymbol{H}. \boldsymbol{R}. Thuillier, R.E., Surueyor General of India. Dehra Dūn, 1892.
Do. XXXI. The Khãpisūra Meridional Series, or Scrics G of the South. West Quadrilateral. Prepared in the Office of the Trigonometricit Branch, Surrey of India, Colonel G. Strahan, R.S., Deputy Surveyor General, in charge, and published under the orders of Colonel H. R. Thuillier, R.E., Surveyor General of India. Jechra Dūn, 1893.
Do. XXXII. The Singi Meridional Series, or Series H of the South-West Quadrilateral. Prepared in the Office of the Trigonometrical Branch, Survey of India. Colunel G. Strahan, R.E., Depuly Surveyor General, in chargo, and published under the orders of Culonel H. R. Thuillicr, R.E., Surveyor General of India. D.hre Dūn, 1893.

Do. XXXIII. The Cutch Const Scries, or Scries L of the South. Test Quadrilateral. Prepared in the Office of the Trigonomblrical Branch, Survey of India, Colonel G. Strahan, R.E., Deputy Surveyor Genciul, in charge, and published under the orders of Coloncl H. R. Thuillier, C.I.E., R.E., Surveyor General of India. Dehra Dīn, 1893.
Adilendum to the Cutch Conat Series (Syn. Vol. XXXIII), Dehra Dün, 1902.
Do. XXXIV. The Kñthiñā Meridional Series, or Series J of the South-West Quadrilateral. Prepared in the Office of the Trigonometrical Branch, Survey of Iudia. Colonel G. Strahan, R.E., Deputy Surveyor General, in charge, and puhlished under the orders of Colonel II. R. Thuillier, C.I.E., R.E., Eurveyor General of India. Dehra Dün, 1894.
Do. XXXV. The Noth-East Longitudinal Series, or Srries I of the Noth-East Quadrilatoral. Prepared under the Directions of Colonel S. G. Burrard, R.E., F.R.S., Supcrintendent, Trigonometrical Surveys, and publishcd under the orders of Colonol F. B. Longe, R. E., Surveyor Gencial of lndia. Detira Dun,

LEVELLING OF PRECISION IN INDIA AND BURNA.
Obtainable from the Superintendent of the Trigonometrical Survey, Dehra Dun, U. P.
And panphlat corresponle to a sheet of the one.millionth map and oontains the heights and descriptions of all \&ench. marks that lie within the area that the sheet covers. Printed and published nt Dehra Dan.

Price Rupees 2 per pamphlet except where otherwise stated.

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \& sheet No. \& Latitude. \& Longitude. \& Year of publi. catiou. \& \& Sheet No. \& Latitude. \& Longitude. \& Year of publi. cation. \\
\hline India \& 35 \& \(44^{\circ}-29^{\circ}\) \& \(64^{\circ}-69^{\circ}\) \& Dilura Dic. 1011. \& India \& 57 \& \(12^{\circ}-16^{\circ}\) \& \& \\
\hline \& 38 \& \(33^{\circ}-96^{\circ}\) \& \(65^{\circ}-78^{\circ}\) \& " \(\quad 191912\). \& 10dia \& 63 \& 80 \({ }^{\circ}-12^{\circ}\) \& \(76^{\circ}-80^{\circ}\) \& \begin{tabular}{c}
Delura Dün. 1912. \\
\(\#\) \\
\hline
\end{tabular} \\
\hline \& 39 \& \({ }^{98} 8^{\circ}-999^{\circ}\) \& 630 - \(78^{\circ}\) \& , 1913. \& " \& 63 \& \(24^{\circ}-23^{\circ}\) \& \(80^{\circ}-84^{\circ}\) \& \[
\begin{array}{llll}
\hline " \& \hline \& 1013 . \\
\hline \& 1911 .
\end{array}
\] \\
\hline \& 41 \& 240 \(4^{\circ}-99^{\circ}\) \& \(68^{\circ}-72^{\circ}\)
\(69^{\circ}-72^{\circ}\) \& " 1911. \& \(\sim\) \& 64 \& \(20^{\circ}-24^{\circ}\) \& \(80^{\prime \prime}-84^{\circ}\) \& \[
\text { " : " } 1911 .
\] \\
\hline \& 41 \& \(20^{\circ}-24^{\circ}\)
\(39-36^{\circ}\) \& \(69^{\circ}-72^{\circ}\)
\(72^{\circ}-76^{\circ}\) \& " 1913. \& " \& 65 \& \(16^{\circ}-20^{\circ}\) \& \(80^{\circ}-84^{\circ}\) \& \[
\begin{array}{lll}
" 1 \& \text { " } \& 1012.19 . \\
" \& 1013 .
\end{array}
\] \\
\hline - \& \& 39
29
\(93^{\circ}-33^{\circ}\)

0 \& $72^{\circ}-76^{\circ}$

$72^{\circ}-76^{\circ}$ \& " 71913. \& " \& 66 \& $12^{\circ}-16^{\circ}$ \& $80^{\circ}-84^{\circ}$ \& $$
\begin{array}{lll}
\prime \prime & " & 1813 . \\
" & \# & 1912 .
\end{array}
$$

\hline \& 44.4 \& $23^{\circ}-33^{\circ}$
$84^{\circ}-23^{\circ}$ \& \& " 1912. \& " \& 72 \& 240 $20^{\circ}-28^{\circ}$ \& $88^{\circ}{ }^{\circ}-88^{\circ}$ \& " " 31912.

\hline \& 45 \& $84^{\circ}-28^{\circ}$

$80^{\circ}-24^{\circ}$ \& \& " 1911. \& " \& 73 \& $20^{\circ}-2.4{ }^{\circ}$ \& $88^{\circ}-88^{\circ}$ \& $$
\text { " " } 19192 .
$$

\hline \& 46 \& $200^{\circ}-24^{\circ}$
$16^{\circ}-20^{\circ}$ \& \& " " 191912. \& " \& 74 \& $16^{\circ}-20^{\circ}$
$24^{\circ}-28^{\circ}$ \& $88^{84^{\circ}-988^{\circ}}$ \& " "

\hline \& 48 \& $12^{\circ}-16^{\circ}$ \& 720 ${ }^{\circ} 6^{\circ}$ \& " $"$ " 1918. \& " \& 79 \& $20^{\circ}-24^{\circ}$ \& $888^{88} 8^{\circ}-92^{\circ}{ }^{\circ}$ \& " 1912.

\hline \& 49* \& $8^{\circ}-11^{\circ}$ \& $78^{\circ}-75^{\circ}$ \& - 1911. \& \& 83 \& $24^{\circ}-28^{\circ}$ \& \& $$
\begin{array}{lll}
\prime \prime & \Rightarrow & 1912 . \\
\# &
\end{array}
$$

\hline - \& B8* \& $33^{\circ}-36^{\circ}$ \& $76^{3}-80^{\circ}$ \& " 1912. \& Burma \& 8.4 \& $20^{\circ}-24^{\circ}$ \& $9{ }^{9} 92^{\circ}-96^{\circ}$ \& $$
\begin{array}{lll}
\prime \prime & \text { " } & 1912 . \\
",
\end{array}
$$

\hline - \& 63 \& $28^{\circ}-33^{\circ}$ \& $760^{\circ}-80^{\circ}$ \& " 1912. \& \& 85 \& $16^{\circ}-20^{\circ}$ \& $92^{\circ}-93^{\circ}$ \& " 1911.

\hline \cdots \& 54 \& $24^{\circ}-23^{\circ}$ \& $763-80^{\circ}$ \& , 1911. \& " \& 92 \& $24^{\circ}-28^{\circ}$ \& $96^{\circ}-100^{\circ}$ \& " ", 191.

\hline \& 55
56 \& $200^{\circ}-24^{\circ}$
$10^{\circ}-20^{\circ}$ \& $70^{\circ}-80^{\circ}$
76 \& " 1912. \& " \& 93
94 \& $20^{\circ}-24^{\circ}$
$16^{\circ}-20^{\circ}$ \& $9{ }^{96} 6^{\circ}-100^{\circ}$ \& " " 1911.

\hline \& 56 \& $16^{\circ}-20^{\circ}$ \& $76^{\prime}-80^{\circ}$ \& " 1912. \& " \& 94 \& $16^{\circ}-20^{\circ}$ \& $96^{\circ}-100^{\circ}$ \& " " 1911.

\hline
\end{tabular}

- Price Re. 1.

PROFESSIONAL PAPERS OF THE SURTEY OF INDIA.

Price Rupee 1 per volume, except ohere otherwise stated.
So. 1. On the Projection for a Map of Indin and adjacent Countries on the senle of $1: 1000000$. By Colonel St. G. C. Gore, R.E. Second Elition, Dehra l)ūn, 1903.
,. 2. Method of measuring Geoletic Bases by means of Metallic Wires. By M. Jäderin. (Translated from Mémoires Présentés par Divers Savants à l'académie des Sciences de l'Institut de France) Dehra Dūn, 1899. (Out of print).
3. Method of measuring Gendetic Bases by means of Colby's Compensated Bars. Compiled by Lieutenant H. McC. Covie, R.E. Debra Dūn, 190i). (Out of print).
" 4. Notes on the Calibration of Levels. By Lieutenant E. A. Tındy, R.E. Dehra Dūn, 1900. (Out of print.)
" 5. The attration of the Himalara Mountains upon the Plumb-Line in India. Considerations of recent data. By Major S. G. Burruid, R.E. Second Edition. Debra Dūn, 1901. Price Rs. 2.

- 6. Leconnt of a Determination of the Co-efficients of Espansion of the Wires of the Jäderin Base-Line Apparatus. By Captain G. P. Lenor Conyngham, R.E. Dehra Dūn, 1902.
, 7. Miscellaneous. Culcutta, 1903.
(1) On the ralues of Longitude emplored in maps of the Survey of India. (2) Levelling across the Ganges at Damukdia. (3) Experiment to test the increase in the leugth of a Lavelling Staf due to moisture and temperature. (b) Description of a Sun-dinl designed for use with tide ganges. (5) Nickel-steel allops and their appliention to Geodesy. (Translated from the French.) (6) Theory of electric projectors. (Translated from the French).
- 8. Experimenta made to determine the Temperature Co-efficients of Watson's Magnetographs. By Captain \boldsymbol{H}. A. Denholm Fraser, R.E. Calcutta, 1905.
- 9. Au Acconnt of the Scientific work of the Survey of India and a Comparison of its progress with that of Foreign Sarregs. Prepored for the use of the Survey Committee, 1905, by Lieutenant-Colonel S. G. Burrard, R.E., F.R.S. Calcutta. 1905.
- 10. The Pendulum Operations in India, 1903 to 1907. By Majur G. P. Lenox Conyngham, R.E. Dehra Dūu, 1908. Price.Rs. 2-8.
., 11. Obsprvation of Atmospheric Refraction, 1905-09. By H. G. Shatc, Survey of India. Debra Dūn, 1911.
" 12. On the Origin of the Himalaga Mountaine. By Colonel S. G. Burrald, C.S.I., R.E., F.R.S. Calcutta, 1912.
. 13. Investigation of the Thenry of Isostasy in Indie. By Najor H. L. Crosthwait, R.E. Dehin Dūn, 1912.
- 14. Formule for Atmoapheric Refraction and their application to Terrestrial Refraotion and Geolesy. By J. de Granf Hunter, M.A. Dehra Ilūn, 1913. Prioe Rs. 8.

11. A Sketch of the Geography and Geology of the Himalaya Mnuntains and Tibet. By Colonel S. G. Burrard, R.E. R.S., Superintendent, Trigonometrical Surveys, and Mr. H. H. Hayden, B.A., F.G.S., Superintendent, Geological Survey of India, Calcutta, 1007-09.

Part I.-The High Peaks of Asia.
" II.-The Principal Mountain Ranges of Asia.
" III.-The Rivers of the Himălaya and Tibet.
" IV.-The Geology of the Himalaya. Price Re. 2 per part.

12. Routes in the Western Himālaya, Kaßhmir, etc. By Lieut. Colonel T. G. Montgomerie, R.E., F.R.S., F.R.G.S., Tuird Edition. Revised and corrected. Dehra Dün, 1909. (Out of print).
13. On a Simplification of the Computations relating to Rectangular Co-ordinates. By J. A. Eceles, M.A., Officiateng spperintendent, Trigonometrical Surveys. Dehra Dūn, 1911.
14. Notes on the Use of Thermometers, Barometers and Hypsometers with Tables for the Computation of Heighta. Bg Jde Gradf Hunter, M.A. Dehra Dañ, 1011.

PUBLICATIONS FOR DEPARTMENTAL USE ONLT.

[^8] Mehra Dūa, 1 Sa3.
10. Report on Local Attraction in India, J S03-04. By Captain S. G. Burrard, R.E. Calcutta, 1805. (Oat of print)
11. Instructions for taking Magnetic Observations. By J. Eccles, M.A. Dehra Dūn, 1896.
12. Repert on the Trigonometrical Results of the Earthquake in Assam. Calcutta, 1898.
13. The Total Solar Eclipse, January 22, 1898. Dehra Dūn, 1898.
(1) Report on the observations at Dumraon.
(2) Report on the observation at Pulgaon.
(3) Report on the observations at Snhdol.
14. Circular Orders (Administrative) issued from 1578 to 31 st December 1903. Calcutta, 1904.
15. Report on the Identitication and Nomenclature of the Himålajan Peaks as seen from Katmandu, Nopal. Calcatta, 1001.
16. Notes on the use of the Jäderin Base-line Apparatus. Prepared under the direction of Lieutenant-Colonel F. H. Longe, R.E. Dehra Dūn, 1904.
17. The reproduction of Maps and Drarings-a hand-book for the use of Government officials and others who prepare Maps Plans and other subjects for reproduction in the Photographic and Lithogiaphic office of the Survey of India. By T. A. Popo, C'alcatta, $190{ }^{\circ}$.
18. Rainfall from 1868 to 1903 , measured at the G. T. Survey Office. Dehra Dūn.
19. Notes on the Topegraphical Survey of the $\frac{1}{50000}$ Sheete of Algeria by the Topographical Section of the "Sorvice Géogia. phiqne de l'Armée.". By Captain T. M. Coldstream, R.E. Calcutta, 1906
20. Instructions for the preparation of Maps of the one-inch Standard Sheets, etc. Under the direction of Colonel F. \boldsymbol{B} Longe, R.E. Simla, 1907. (Out of print).
21. Notes on the Drawing of New Standard Maps. By Major W. M. Coldstream, R.E. Calcutta, 1903.
22. Circular Orders (Administrative) issued from 1904 to 31st December 1208. Calcutta, 1909.
23. Report on Rubber Offet Printing for Maps. By Major IF. M. Coldstream, R.E. Calcutta, 1911.
24. Notes on Printing Papers suitable for Maps and on Whatman Drawing Paper. By Major W. M. Coldstream, R.E. Calcutta, 1011.
25. Report on the Working of the Light Field Litho Press (Experimental) in November and December 1910 with Appendicee* By Lientenant A. A. Chase, R.E. Calcutta, 1911.
(1) Notes on Some of the Methods of Reproduction suitable for the Field.
(2) Suggested Equipment Tables for the Light Field Litho Press (Esperimental).
33. A consideralion of the Contour Intervals and Colour Scales best suited to Indian $\frac{1}{\mathrm{M}}$ maps. By Captain M. O'C. Tandy. R.E. Calcutta, 1013.
34. Notes on the "Vandyke" or Direct Zinc Printing Process, with details of Apparatus and Chemicals required for an anall section. Compiled in the Photo. and Litho. Office, Survey of India, under the direction of Colonel T. F. B. Renny-Tailyour, C.S.I., R.E., Offg. Surveyor General of India. Calcutta, 1913.

Departmental Paper Series.

No. 1. A consideration of the most suitable forms of type for use on maps. By Captain M. O'C. Tandy, R.E. Dehra Dīn, 1813.

No. 2. A review of the Boundary Symbols used on the maps of rarious countrics. By Captain M. O'C. Tandy, R.E. Dehra Dūn, 1913.

No. 3. Ertract from "The New Map of Italy, Scale 1: 100,000". By Luigi Giannitrapani. Translated from the Italian by Major W. M. Coldstream, R.E. Dehra Dūn, 1913.

No. 4. A report on the practice of Town Surveys in the United Kingdom and its application to India. By Major C. L. Robertson, C.sI.G., R.E. Dehra Dūn, 1913.

No. 5. The Thompson Stereo-plotter and ite use with notes on the field work. By Lieutenant K. Mason, R.E. Dehra.
1913. Dūn, 1913.

HAND-BOOKS OF THE SURVEY OF INDIA.

1. Hnnd-book of General Instructions for the Survey of India Department. Third Edition. Calcuttin, 1! (17. Price Rs. 3. (Fcurth Edition is ander publication.)
2. Hand-book of Professional Instructions for the Trigonometrical Branch, Survey of India Department. Sceond Edition, Calcutta, 1902. Price Rs. 3.
*3. Hand-book of Professional Instructious for the Topographical Branch, Surveg of Indin. Third Edition. Calcutta, J905. Price Rs. 3.
3. Auxiliars Tables to facilitate the calculations of the Surves of India. Fourth Edition, revised and extended. Dehra Dün, 1906. Price Rs. 4 in cloth and calf, or Rs. 2 in paper and boards.
4. Table for determining Heights in Traversing. Delıra D ūn, 189̊. Price As. 8.
5. Tables for Graticules of Maps. Extracts from the Auxiliary Tables of the Survey of Iudia for the use of Explores. Dehra Dūu, 1910. Price As. 4.
6. Logarithmic Sines and Cosines to 5 places of decimals. Dehra Dūn, 1886. Price As. 4.
7. Common Logarithms to 5 places of Decimals.
8. Tables of distances in Chains and Links corresponding to a subtense of 20 feet. Debra Dūn, 1889. Price As, 4.

REPORTS ON EXPLORATIONS.

1. Report on the Explorations in Great Tibet and Mongolia, made by A-K., in 1879-82. Debra Dūn, 1891. Price Rs. 3.
2. Report on the Trans-Himalayan Exploations during 1867. (Out of print.)

in Sikkim, Bhutãn and Tibet. Dehra Dūn, 1889. (Out of print.)
3. Report on the Explorations in Nepāl and Tibet by Explorer M—H. (Season 1885-86.) Dehra Dūn, 1887. (Oot of print).
4. Explorations on the Tsan-po in 1880-81, by Explorer Kinthup. Debra Dūn, 1911. (Oat of print.)
5. Report on the Surrey Operations, Miri Mission, 1911-12. By Lieutenant C. G. Lewis, R.E. Dehrs Dōn, 1912. (Oat of print).
6. Report on the Sarvey Operations, Hkamti Long Expedition, 1911-12. By Lieulenant E.B. Curdew, R.E. Dehra Dãn, 1912. (Out of print).
7. Report on the Sarvey Operationa, Mishmi Mission, 1911-12. By Captain C. P. Gunter, R.E. Debra Dūl, 1912. (Out of print).

CA'TALOGUE OF SCIENTIFIC BOOKS, ETC., ETC.

1. Catalogue of Books in the Head-Quarters Library, Calcutta, 1901. (Out of pint.)
2. Catalogut of Mape published by the Survey of India. Calcutta, 1910. (Oat of print).
3. Price List of Nathematical Instrument Office. Calcutta, 1913. (Oat of print).

- The following chapters of a revised elition of this Hand-book are available for issue in pamphlet form :Chapter I.-Introductory.
II.-Constitution and Organization of a Survey Party.
" III.-Triangulation and its Compotation.
" IV.-Traversing and its Compotation.
" V.-Plana-tabling.
.. VI.--Fair Mapping.
" VII.-Trans-ftontier Reconnmiasance.
" JX.-Forest Surveys and Maps.

4. Catalogue of Scientific Bonks and Subjects in the Library of the Trigononetrical Survey Office. Dehra Dūn, 1908. price Re. 1.
j. Catanguo of Books in the Library of the Trigonometrical Survey Office. Dehra Dūn, 1911. Pr:ce Re. 1.

ANNUAL GENERAL REPORTS ON THE OPERATIONS OF THE SURVFY OF INDIA.
 Price of each volume from 1877 to 1900 Rs. 3.

, 1901 to 1913 ,, 2.
Revenue Reports . .".". . $18 . \overline{1}$ to $1877 .-(1857$ to 1870 out of print).
Topographical Repnit: . . . 1861 to 1877 .-(1862 to 1866 and 1872 to 1875 out of print).
Trigonometrical Reports . . . 1861 to 1878.-(1863 to 1867 and 1868-69 out of print).

EXTRACTS FROM NARRATIYE REPORTS OF THE SURVEY OF INDIA.

Price Rupees 1.8 per volume.

1. 1900-01. Recent Improvements in Photo-Zincography. G. T. Triangulation, Upper Burma. Latitude Operations. Erpermental Base Measurement with Jäderin Apparatus. Magnetic Survey. Tidal and Levelling Report. Topography in Upper Burma. Calcutta, 1903. (Out of print).
2. 1901-02. G. T. Tringgulation, Upper Burma. Latitude Operations. Magnetic Survey. Tidal and Levelling Report. Topography in Upper Burma. Topography in Sind. Topography in the Punjab. Calcutta, 1904.
3. 1902.0\%. Principal Triangulation, Upper Burna. Topography. Upper Burma. Topography, Shan States. Survey of the Sämhlar Lake. Latitude Operations. Tidal and Levelling Operations. Magnetic Survey. Introduction of the Contract Syslem of Payment in Traverse Survers. Traversing with the Subtense Bar. Compilation and Reproduction of Thana Mape. Calcutta, 1905.
4. 1903-04. The Magnetic Survey of India. Dendulum Operations. Tidal and Levelling Operations. Astrouomical damuths. Utilisation of ohd Traverse Data for Modern Surveys in the United Provinces of Agratand Oull. Identification of Snow Pobs in Nepal. Topographicai Surveys in Siol. Notes on Town and Muncipal Surveys. Notes on Rivorain Survers in the Puajab. Cillcutta, 1906.
5. 190f-05. The Magnetic Surer of India. Pentulum Operations. Ti laland Levelling Onerations. Triangulation in Bolń dhistan. Survey Operations with the Somaliland Field Force. Calcutta, 1907.
6. 1905-06. The Magnetic Surves of India. Pendulum Operations. Tidal and Levelling Oporations. Tratract from the Narrative Report of No. 11 Party. Calcutta, 1908.
7. 1906.07. The Magnetic Survey of India. Pendulum Operations. Tidal and Levelling Operations. Triangulation in Balãthistân. Astronomical Latitudes. Topographical Survers in Karenui. Extract from the Narvative Report of No. Il Parts. (alcutta, 1900.
8. 190r-08. The Magnetic Survey of India. Tidal anl Levelling Operations. Astronomical Latitules. Penlulum Operations . .Estract from the Narrative Report of No. 11 Party. Calcutta. 1010
9. 1909-09. Tho Magnelic Survey of India. Tidal and I,evelling Operations. Penlulum Operatinns, Triangulation in Indin. Calcutta, 1911.

RECORDS OF THE SURVEY OF INDIA.

Price Rupees 4 per volu me.
「olume I, 1909-10. Topographical Surrer. Triangulation. Lroolling. Geodetic Survey. Magnetic Surveg. Tidal Oielations. Physiographical Changes. Calcutta, 1912.

Volune II, 1910-11. Topographical Survey. Triangulation. Tidal and Levelling. Geodetic Survey. Magnetic Surver. Ileproducing Offices. Calcutta. 1912.

Folume III, 1911-12. Topographical Survey. Triangulation. Tidal and Levelling. Geodetic Survey. Magnetic Survey. Reprolucing Offices. Calcutta, 1913.

Folume 1F, 1911-12-13. Erplovatiens on the North-East Frontier:-North Buma, Mishmi, Abor and Miri Surveys. Calcutta, 1014.

Volume T, Reports of the Survey Parties for 1912-13. - Topographical Surves. Geodetic and Scientific Operations. Calcutta, 1014.

SURVEY PUBLICATIONS OTHER THAN THOSE PUBLISHED BY THE SURVEY OF INDIA.

1. An Account of the Measurement of an Are of the Meridian between the parallels of $18^{\circ} \mathbf{3}^{\prime}$ and $24^{\circ} 7^{\prime}$. By Captain George Everesl of the Bengal Artillery, F.R.S., etc. Published by the Authority of the Hon. East Iudia Company. London, 1830. (Out of print).
2. An Account of the Mensurement of two Soctions of the Meridional Are of India, bounded by the parallels of $18^{\circ} \mathbf{a}^{\circ} 1 \mathbf{0}^{\prime \prime}$. $24^{\circ} 7^{\prime} 11^{\prime \prime}$; and $29^{\circ} 30^{\prime} 48^{\prime \prime}$. By Lieutenant-Colonel Everest, F.R.S., etc., Late Surveyor General of India, and his Assist. ants. Printed by order of the Court of Directors of the Hon. East India Company. London, 1847.
3. A Memoir on the Indian Surveys. Dy Clements R. Markham. Printed by order of Her Majesty's Secretary of State
India in Council. London, 1871 . for India in Council. London, 1871.
4. A Memoir on the Indian Surveys. By Clements R. Markham, C.B., F.R.S. Printed by order of Her Majesty's Secre. tary of State for India in Council. Second Edition. London, 1878.
5. A Memoir on the Indian Surveys, 1875-1890. By Charles E. D. Black. Printed and published by order of Fir Majesty's Secretary of State for India in Council. London, 1891.
6. (a) A Manual of Surveying for India, detailing the mode of operations on the Revenue Surveys in Bengal and the NorthWeslern Provinces. Compiled by Captains R. Smyth and H. L. Thuillier, Bengal Artillery. Prepared for the use of the Survey Department and published by the Authority of the Government of India. Calcutta, $18 \dot{z}^{2} 1$.
(b) A Mamal of Surveying for India, detailing the moile of operations on the Revenue Surveys in Bengal and the NorthTesprn Provinces. Compiled by Cuptains R. Smyth and M. L. Thuillier, Bengal Artillery, Prepared for tiee use of the Survey Department, and published under the Authority of the Government of Iudia. Second Edition. London, 1855.
(c) A Manual of Surveying for India, detailing the mode of operations on the Trignommetrical. Topographical and Revenue Surrers of India. Compiled by Colonel H. L. Thuillier, C.S.I., F.R.S., F.R.A.S., F.R.G.S., etc., Royal Artillery, and

[^0]: rotes.

 1. Except in Madras where the lists preparel by the Director, Madras Revenue Survey, go throngin a very careful system of elecking, a great deal of diffinulty was exporicoced by parties in obtaining the correct apelling of village and other names. Lists were sent to Deputy Commissioners for verification and correction, but when these were received buck it was often found that the same name was spelt quite differently evon in different parts of the same distrist and in the same 1 -inch shect.

 These difficulties tend to increase where parts of different districts or provinces fall in the same sheet and in the case of degree alceets containing parts nf !'owbny and the Centr.! Erovinoes where the system of spelling

[^1]: Note.--Six aluminium plane-tables were iried in the ficld, and as regards variation in graticule measurements, proved entirely satisfactory, but they developed the following serious defect. In every case the edges sagged leaving a raised portion in the centre above the screw, on which the sight rule pivotted, making fixinge laborious and liable to error. An attempt is being made in the Nathematical Instrument Office to correct this by strengthening the bracing.

 A telescopic clinometer devigned hy Captain Pye, R.E., giving direct readings in natural tangenta to four places of decimals "as tried and gave most satisfactory results. It is intended to provide camp officers and survegors working on the $\frac{1}{2}$-inch scale with these instruments.

[^2]: (a) Includlog plane-iable traverse fixing.

[^3]: * Obeorpations taben with a small riper gauge by the Port Ottcer

[^4]: * Ohmeratione taker with amall rinergige hy the Piot Officer.

[^5]: - The revision of the section of single levelling between Pachurin and Poraidala has brought to light an error of about 2 fect. The cireuit error will therefore be reduced to about 0.7 foot.

[^6]: No. 5 will be found on page 67 , Püranpor Talsil, main circait volume, by Land
 Recorde D Department

[^7]: Note. - When the sign is + the magnet points to the East, and when - to the West of the mean position.

[^8]: 1. Report on the Mussoorie and Landour, Kumann and Garhwal, Ranikhet and Kosi Valley Surveys extended to Peahawar and Khagan Triangulation during 1869-70, by Major T. G. Montgomerie, R.E. (Out of print).
 2. Report of the Cartographic Applications of Photography as used in the Topographical Departmente of the Principal Sace in Central Europe. By Colonel J. Waterhouse. Calcutta, 1870.
 3. Report of the Operations comnected with the Observation of the Total Solar Eclipse of 0th April 1875 at Camorta in the Yirobn' Islands. By Colonel J. Waterhouse. Calcutta, 1875. (Out of print).
 4. Account of the Survey Operations in connection with the Mission to Yarkand and Kashghar in 1873-74. By Captain Ilenry Trotter, R.E. Calcutta, 1875.
 5. The application of Photography to the Reproduction of Maps and Plans by the Photo-Mechanical and other Processes. By Cdonel J. Waterhouse. Calcutia, 1878. (Out of print).
 6. Indes to Circular and Departmental (Professional) Orders from 1st January 1878 to 31st December 1887. Dehra Dīn, 1888.
 7. Metric Weights and Measures and other Tables. Prepared for the use of the Photographic and Lithographic Offices, Surrey of India, by Colonel J. W'aterhouse, B.S.C., Assistant Surveyor General of India, assisted by W. H. Cole, Esq., M.A., and I'. Archdale Pope, Esq., Surey of India. Calcutta, 1889. (Out of print).
 8. The Practical Notes on Preparation of Drawings for Photogiaphic Reproductions. By Colonel J. Waterhouse. Calcutta, 1390.
 9. Catalogue of 240 Stars for the epoch January 1,1802 , from observations by the Great Trig nometrical Sarvey of India
